RSS

Search Results for 'string theory'

String Theory Gets a Boost

Among the scientific theories that excite a great deal of controversy are those theories that deal with strings. And the idea of cosmic strings gets as much play as any in scientific circles.

M-Theory: The Mother of all SuperStrings

An introduction to M-Theory

Every decade or so, a stunning breakthrough in string theory sends shock waves racing through the theoretical physics community, generating a feverish outpouring of papers and activity. This time, the Internet lines are burning up as papers keep pouring into the Los Alamos National Laboratory’s computer bulletin board, the official clearing house for superstring papers. John Schwarz of Caltech, for example, has been speaking to conferences around the world proclaiming the “second superstring revolution.” Edward Witten of the Institute for Advanced Study in Prince- ton gave a spell-binding 3 hour lecture describing it. The after- shocks of the breakthrough are even shaking other disciplines, like mathematics. The director of the Institute, mathematician Phillip Griffiths, says, “The excitement I sense in the people in the field and the spin-offs into my own field of mathematics … have really been quite extraordinary. I feel I’ve been very privileged to witness this first hand.”

Cumrun Vafa at Harvard has said, “I may be biased on this one, but I think it is perhaps the most important development not only in string theory, but also in theoretical physics at least in the past two decades.” What is triggering all this excitement is the discovery of something called “M-theory,” a theory which may explain the origin of strings. In one dazzling stroke, this new M-theory has solved a series of long-standing puzzling mysteries about string theory which have dogged it from the beginning, leaving many theoretical physicists (myself included!) gasping for breath. M-theory, moreover, may even force string theory to change its name. Although many features of M-theory are still unknown, it does not seem to be a theory purely of strings. Michael Duff of Texas A & M is already giving speeches with the title “The theory formerly known as strings!” String theorists are careful to point out that this does not prove the final correctness of the theory. Not by any means. That may make years or decades more. But it marks a most significant breakthrough that is already reshaping the entire field.

Parable of the Lion

Einstein once said, “Nature shows us only the tail of the lion. But I do not doubt that the lion belongs to it even though he cannot at once reveal himself because of his enormous size.” Einstein spent the last 30 years of his life searching for the “tail” that would lead him to the “lion,” the fabled unified field theory or the “theory of everything,” which would unite all the forces of the universe into a single equation. The four forces (gravity, electromagnetism, and the strong and weak nuclear forces) would be unified by an equation perhaps one inch long. Capturing the “lion” would be the greatest scientific achievement in all of physics, the crowning achievement of 2,000 years of scientific investigation, ever since the Greeks first asked themselves what the world was made of. But although Einstein was the first one to set off on this noble hunt and track the footprints left by the lion, he ultimately lost the trail and wandered off into the wilderness. Other giants of 20th century physics, like Werner Heisenberg and Wolfgang Pauli, also joined in the hunt. But all the easy ideas were tried and shown to be wrong. When Niels Bohr once heard a lecture by Pauli explaining his version of the unified field theory, Bohr stood up and said, “We in the back are all agreed that your theory is crazy. But what divides us is whether your theory is crazy enough!”

The trail leading to the unified field theory, in fact, is littered with the wreckage of failed expeditions and dreams. Today, however, physicists are following a different trail which might be “crazy enough” to lead to the lion. This new trail leads to superstring theory, which is the best (and in fact only) candidate for a theory of everything. Unlike its rivals, it has survived every blistering mathematical challenge ever hurled at it. Not surprisingly, the theory is a radical, “crazy” departure from the past, being based on tiny strings vibrating in 10 dimensional space-time. Moreover, the theory easily swallows up Einstein’s theory of gravity. Witten has said, “Unlike conventional quantum field theory, string theory requires gravity. I regard this fact as one of the greatest in- sights in science ever made.” But until recently, there has been a glaring weak spot: string theorists have been unable to probe all solutions of the model, failing miserably to examine what is called the “non-perturbative region,” which I will describe shortly. This is vitally important, since ultimately our universe (with its wonderfully diverse collection of galaxies, stars, planets, sub- atomic particles, and even people) may lie in this “non-perturbative region.” Until this region can be probed, we don’t know if string theory is a theory of everything — or a theory of nothing! That’s what today’s excitement is all about. For the first time, using a powerful tool called “duality,” physicists are now probing beyond just the tail, and finally seeing the outlines of a huge, unexpectedly beautiful lion at the other end. Not knowing what to call it, Witten has dubbed it “M-theory.” In one stroke, M-theory has solved many of the embarrassing features of the theory, such as why we have 5 superstring theories. Ultimately, it may solve the nagging question of where strings come from.

“Pea Brains” and the Mother of all Strings

Einstein once asked himself if God had any choice in making the universe. Perhaps not, so it was embarrassing for string theorists to have five different self-consistent strings, all of which can unite the two fundamental theories in physics, the theory of gravity and the quantum theory.

Each of these string theories looks completely different from the others. They are based on different symmetries, with exotic names like E(8)xE(8) and O(32).

Not only this, but superstrings are in some sense not unique: there are other non-string theories which contain “super- symmetry,” the key mathematical symmetry underlying superstrings. (Changing light into electrons and then into gravity is one of the rather astonishing tricks performed by supersymmetry, which is the symmetry which can exchange particles with half-integral spin, like electrons and quarks, with particles of integral spin, like photons, gravitons, and W-particles.

In 11 dimensions, in fact, there are alternate super theories based on membranes as well as point particles (called super- gravity). In lower dimensions, there is moreover a whole zoo of super theories based on membranes in different dimensions. (For example, point particles are 0-branes, strings are 1-branes, membranes are 2-branes, and so on.) For the p-dimensional case, some wag dubbed them p-branes (pronounced “pea brains”). But because p-branes are horribly difficult to work with, they were long considered just a historical curiosity, a trail that led to a dead-end. (Michael Duff, in fact, has collected a whole list of unflattering comments made by referees to his National Science Foundation grant concerning his work on p- branes. One of the more charitable comments from a referee was: “He has a skewed view of the relative importance of various concepts in modern theoretical physics.”) So that was the mystery. Why should supersymmetry allow for 5 superstrings and this peculiar, motley collection of p-branes? Now we realize that strings, supergravity, and p-branes are just different aspects of the same theory. M-theory (M for “membrane” or the “mother of all strings,” take your pick) unites the 5 superstrings into one theory and includes the p-branes as well. To see how this all fits together, let us update the famous parable of the blind wise men and the elephant. Think of the blind men on the trail of the lion. Hearing it race by, they chase after it and desperately grab onto its tail (a one-brane). Hanging onto the tail for dear life, they feel its one- dimensional form and loudly proclaim “It’s a string! It’s a string!”

But then one blind man goes beyond the tail and grabs onto the ear of the lion. Feeling a two-dimensional surface (a membrane), the blind man proclaims, “No, it’s really a two-brane!” Then another blind man is able to grab onto the leg of the lion. Sensing a three-dimensional solid, he shouts, “No, you’re both wrong. It’s really a three-brane!” Actually, they are all right. Just as the tail, ear, and leg are different parts of the same lion, the string and various p- branes appear to be different limits of the same theory: M- theory. Paul Townsend of Cambridge University, one of the architects of this idea, calls it “p-brane democracy,” i.e. all p- branes (including strings) are created equal. Schwarz puts a slightly different spin on this. He says, “we are in an Orwellian situation: all p-branes are equal, but some (namely strings) are more equal than others. The point is that they are the only ones on which we can base a perturbation theory.” To understand unfamiliar concepts such as duality, perturbation theory, non-perturbative solutions, it is instructive to see where these concepts first entered into physics.

Dualty

The key tool to understanding this breakthrough is something “duality.” Loosely speaking, two theories are “dual” to each other if they can be shown to be equivalent under a certain interchange. The simplest example of duality is reversing the role of electricity and magnetism in the equations discovered by James Clerk Maxwell of Cambridge University 130 years ago. These are the equations which govern light, TV, X-rays, radar, dynamos, motors, transformers, even the Internet and computers. The remarkable feature about these equations is that they remain the same if we interchange the magnetic B and electric fields E and also switch the electric charge e with the magnetic charge g of a magnetic “monopole”: E <–> B and e <–> g (In fact, the product eg is a constant.) This has important implications. Often, when a theory cannot be solved exactly, we use an approximation scheme. In first year calculus, for example, we recall that we can approximate certain functions by Taylor’s expansion. Similarly, since e^2 = 1/137 in certain units and is hence a small number, we can always approximate the theory by power expanding in e^2. So we add contributions of order e^2 + e^4 + e^6 etc. in solving for, say, the collision of two particles. Notice that each contribution is getting smaller and smaller, so we can in principle add them all up. This generalization of Taylor’s expansion is called “perturbation theory,” where we perturb the system with terms containing e^2. For example, in archery, perturbation theory is how we aim our arrows. With every motion of our arms, our bow gets closer and closer to aligning with the bull’s eye.) But now try expanding in g^2. This is much tougher; in fact, if we expand in g^2, which is large, then the sum g^2 + g^4 + g^6 etc. blows up and becomes meaningless. This is the reason why the “non-perturbative” region is so difficult to probe, since the theory simply blows up if we try to naively use perturbation theory for large coupling constant g. So at first it appears hopeless that we could ever penetrate into the non-perturbative region. (For example, if every motion of our arms got bigger and bigger, we would never be able to zero in and hit the target with the arrow.) But notice that because of duality, a theory of small e (which is easily solved) is identical to a theory of large g (which is difficult to solve). But since they are the same theory, we can use duality to solve for the non-perturbative region.

S, T, and U Dualty

The first inkling that duality might apply in string theory was discovered by K. Kikkawa and M. Yamasaki of Osaka Univ. in 1984. They showed that if you “curled up” one of the extra dimensions into a circle with radius R, the theory was the same if we curled up this dimension with radius 1/R. This is now called T- duality: R <–> 1/R When applied to various superstrings, one could reduce 5 of the string theories down to 3 (see figure). In 9 dimensions (with one dimension curled up) the Type IIa and IIb strings were identical, as were the E(8)xE(8) and O(32) strings.

Unfortunately, T duality was still a perturbative duality. The next breakthrough came when it was shown that there was a second class of dualities, called S duality, which provided a duality between the perturbative and non-perturbative regions of string theory. Another duality, called U duality, was even more powerful.

Then Nathan Seiberg and Witten brilliantly showed how another form of duality could solve for the non-perturbative region in four dimensional supersymmetric theories. However, what finally convinced many physicists of the power of this technique was the work of Paul Townsend and Edward Wit- ten. They caught everyone by surprise by showing that there was a duality between 10 dimensional Type IIa strings and 11 dimension- al supergravity! The non-perturbative region of Type IIa strings, which was previously a forbidden region, was revealed to be governed by 11 dimensional supergravity theory, with one dimension curled up. At this point, I remember that many physicists (myself included) were rubbing our eyes, not believing what we were seeing. I remember saying to myself, “But that’s impossible!”

All of a sudden, we realized that perhaps the real “home” of string theory was not 10 dimensions, but possibly 11, and that the theory wasn’t fundamentally a string theory at all! This revived tremendous interest in 11 dimensional theories and p- branes. Lurking in the 11th dimension was an entirely new theory which could reduce down to 11 dimensional supergravity as well as 10 dimensional string theory and p-brane theory.

Detractors of String Theories

To the critics, however, these mathematical developments still don’t answer the nagging question: how do you test it? Since string theory is really a theory of Creation, when all its beautiful symmetries were in their full glory, the only way to test it, the critics wail, is to re-create the Big Bang itself, which is impossible. Nobel Laureate Sheldon Glashow likes to ridicule superstring theory by comparing it with former Pres. Reagan’s Star Wars plan, i.e. they are both untestable, soak up resources, and both siphon off the best scientific brains.

Actually, most string theorists think these criticisms are silly. They believe that the critics have missed the point. The key point is this: if the theory can be solved non- perturbatively using pure mathematics, then it should reduce down at low energies to a theory of ordinary protons, electrons, atoms, and molecules, for which there is ample experimental data. If we could completely solve the theory, we should be able to extract its low energy spectrum, which should match the familiar particles we see today in the Standard Model. Thus, the problem is not building atom smashers l,000 light years in diameter; the real problem is raw brain power: of only we were clever enough, we could write down M-theory, solve it, and settle everything.

Evolving Backwards

So what would it take to actually solve the theory once and for all and end all the speculation and back-biting? There are several approaches. The first is the most direct: try to derive the Standard Model of particle interactions, with its bizarre collection of quarks, gluons, electrons, neutrinos, Higgs bosons, etc. etc. etc. (I must admit that although the Standard Model is the most successful physical theory ever proposed, it is also one of the ugliest.) This might be done by curling up 6 of the 10 dimensions, leaving us with a 4 dimensional theory that might resemble the Standard Model a bit. Then try to use duality and M- theory to probe its non-perturbative region, seeing if the symmetries break in the correct fashion, giving us the correct masses of the quarks and other particles in the Standard Model. Witten’s philosophy, however, is a bit different. He feels that the key to solving string theory is to understand the under- lying principle behind the theory.

Let me explain. Einstein’s theory of general relativity, for example, started from first principles. Einstein had the “happiest thought in his life” when he leaned back in his chair at the Bern patent office and realized that a person in a falling elevator would feel no gravity. Although physicists since Galileo knew this, Einstein was able to extract from this the Equivalence Principle. This deceptively simple statement (that the laws of physics are indistinguishable locally in an accelerating or a gravitating frame) led Einstein to introduce a new symmetry to physics, general co-ordinate transformations. This in turn gave birth to the action principle behind general relativity, the most beautiful and compelling theory of gravity. Only now are we trying to quantize the theory to make it compatible with the other forces. So the evolution of this theory can be summarized as: Principle -> Symmetry -> Action -> Quantum Theory According to Witten, we need to discover the analog of the Equivalence Principle for string theory. The fundamental problem has been that string theory has been evolving “backwards.” As Witten says, “string theory is 21st century physics which fell into the 20th century by accident.” We were never “meant” to see this theory until the next century.

Is the End in Sight?

Vafa recently added a strange twist to this when he introduced yet another mega-theory, this time a 12 dimensional theory called F-theory (F for “father”) which explains the self-duality of the IIb string. (Unfortunately, this 12 dimensional theory is rather strange: it has two time co-ordinates, not one, and actually violates 12 dimensional relativity. Imagine trying to live in a world with two times! It would put an episode of Twilight Zone to shame.) So is the final theory 10, 11, or 12 dimensional?

Schwarz, for one, feels that the final version of M-theory may not even have any fixed dimension. He feels that the true theory may be independent of any dimensionality of space-time, and that 11 dimensions only emerges once one tries to solve it. Townsend seems to agree, saying “the whole notion of dimensionality is an approximate one that only emerges in some semiclassical context.” So does this means that the end is in sight, that we will someday soon derive the Standard Model from first principles? I asked some of the leaders in this field to respond to this question. Although they are all enthusiastic supporters of this revolution, they are still cautious about predicting the future. Townsend believes that we are in a stage similar to the old quantum era of the Bohr atom, just before the full elucidation of quantum mechanics. He says, “We have some fruitful pictures and some rules analogous to the Bohr-Sommerfeld quantization rules, but it’s also clear that we don’t have a complete theory.”

Duff says, “Is M-theory merely a theory of supermembranes and super 5-branes requiring some (as yet unknown) non- perturbative quantization, or (as Witten believes) are the under- lying degrees of freedom of M-theory yet to be discovered? I am personally agnostic on this point.” Witten certainly believes we are on the right track, but we need a few more “revolutions” like this to finally solve the theory. “I think there are still a couple more superstring revolutions in our future, at least. If we can manage one more superstring revolution a decade, I think that we will do all right,” he says. Vafa says, “I hope this is the ‘light at the end of the tunnel’ but who knows how long the tunnel is!” Schwarz, moreover, has written about M-theory: “Whether it is based on something geometrical (like supermembranes) or some- thing completely different is still not known. In any case, finding it would be a landmark in human intellectual history.” Personally, I am optimistic. For the first time, we can see the outline of the lion, and it is magnificent. One day, we will hear it roar.

For the complete library of books by Dr. Michio Kaku, click here.

Hyperspace and a Theory of Everything

What lies beyond our 4 dimensions?

When I was a child, I used to visit the Japanese Tea Garden in San Francisco. I would spend hours fascinated by the carp, who lived in a very shallow pond just inches beneath the lily pads, just beneath my fingers, totally oblivious to the universe above them.

I would ask myself a question only a child could ask: what would it be like to be a carp? What a strange world it would be! I imagined that the pond would be an entire universe, one that is two-dimensional in space. The carp would only be able to swim forwards and backwards, and left and right. But I imagined that the concept of “up”, beyond the lily pads, would be totally alien to them. Any carp scientist daring to talk about “hyperspace”, i.e. the third dimension “above” the pond, would immediately be labelled a crank. I wondered what would happen if I could reach down and grab a carp scientist and lift it up into hyperspace. I thought what a wondrous story the scientist would tell the others! The carp would babble on about unbelievable new laws of physics: beings who could move without fins. Beings who could breathe without gills. Beings who could emit sounds without bubbles. I then wondered: how would a carp scientist know about our existence? One day it rained, and I saw the rain drops forming gentle ripples on the surface of the pond.

Then I understood.

The carp could see rippling shadows on the surface of the pond. The third dimension would be invisible to them, but vibrations in the third dimensions would be clearly visible. These ripples might even be felt by the carp, who would invent a silly concept to describe this, called “force.” They might even give these “forces” cute names, such as light and gravity. We would laugh at them, because, of course, we know there is no “force” at all, just the rippling of the water.

Today, many physicists believe that we are the carp swimming in our tiny pond, blissfully unaware of invisible, unseen uni- verses hovering just above us in hyperspace. We spend our life in three spatial dimensions, confident that what we can see with our telescopes is all there is, ignorant of the possibility of 10 dimensional hyperspace. Although these higher dimensions are invisible, their “ripples” can clearly be seen and felt. We call these ripples gravity and light. The theory of hyperspace, however, languished for many decades for lack of any physical proof or application. But the theory, once considered the province of eccentrics and mystics, is being revived for a simple reason: it may hold the key to the greatest theory of all time, the “theory of everything.”

Einstein spent the last 30 years of his life futilely chasing after this theory, the Holy Grail of physics. He wanted a theory that could explain the four fundamental forces that govern the universe: gravity, electromagnetism, and the two nuclear forces (weak and strong). It was supposed to be the crowning achievement of the last 2,000 years of science, ever since the Greeks asked what the world was made of. He was searching for an equation, perhaps no more than one-inch long, that could be placed on a T-shirt, but was so powerful it could explain every- thing from the Big Bang, exploding stars, to atoms and molecules, to the lilies of the field.

He wanted to read the mind of God. Ultimately, Einstein failed in his mission. In fact, he was shunned by many of his younger compatriots, who would taunt him with the ditty, “What God has torn asunder, no man can put together.” But perhaps Einstein is now having his revenge. For the past decade, there has been furious research on merging the four fundamental forces into a single theory, especially one that can meld general relativity (which explains gravity) with the quantum theory (which can explain the two nuclear forces and electro- magnetism).

The problem is that relativity and the quantum theory are precise opposites. General relativity is a theory of the very large: galaxies, quasars, black holes, and even the Big Bang. It is based on bending the beautiful four dimensional fabric of space and time. The quantum theory, by contrast, is a theory of the very small, i.e. the world of sub-atomic particles. It is based on discrete, tiny packets of energy called quanta. Over the past 50 years, many attempts have been tried to unite these polar opposites, and have failed. The road to the Unified Field Theory, the Theory of Everything, is littered with the corpses of failed attempts. The key to the puzzle may be hyperspace. In 1915, when Einstein said space-time was four dimensional and was warped and rippled, he showed that this bending produced a “force” called gravity. In 1921, Theodr Kaluza wrote that ripples of the fifth dimension could be viewed as light. Like the fish seeing the ripples in hyperspace moving in their world, many physicists believe that light is created by ripples in five-dimensional space-time.

But what about dimensions higher than 5?

In principle, if we add more and more dimensions, we can ripple and bend them in different ways, thereby creating more forces. In 10 dimensions, in fact, we can accomodate all four fundamental forces! Actually, it’s not that simple. By naively going to 10 dimensions, we also introduce a host of esoteric mathematical inconsistencies (e.g. infinities and anomalies) that have killed all previous theories. The only theory which has survived every challenge posed to it is called superstring theory, in which this 10 dimensional universe is inhabited by tiny strings.

In fact, in one swoop, this 10 dimensional string theory gives us a simple, compelling unification of all forces. Like a violin string, these tiny strings can vibrate and create resonances or “notes”. That explains why there are so many sub- atomic particles: they are just notes on a superstring. (This seems so simple, but in the 1950s, physicists were drowning in an avalanche of sub-atomic particles. J.R. Oppenheim- er, who helped build the atomic bomb, even said, out of sheer frustration, that the Nobel Prize should go to the physicist who does NOT discover a new particle that year!) Similarly, when the string moves in space and time, it warps the space around it just as Einstein predicted. Thus, in a remarkably simple picture, we can unify gravity (as the bending of space caused by moving strings) with the other quantum forces (now viewed as vibrations of the string).

Of course, any theory with this power and majesty has a problem. This theory, because it is a theory of everything, is really a theory of Creation. Thus, to fully test the theory requires re-creating Creation! At first, this might seem hopelessly impossible. We can barely leave the earth’s puny gravity, let alone create universes in the laboratory. But there is a way out to this seemingly intractable problem. A theory of everything is also a theory of the everyday. Thus, this theory, when fully completed, will be able to explain the existence of protons, atoms, molecules, even DNA. Thus, the key is to fully solve the theory and test the theory against the known properties of the universe. At present, no one on earth is smart enough to complete the theory. The theory is perfectly well-defined, but you see, superstring theory is 21st Century physics that fell accidentally into the 20th century. It was discovered purely by accident, when two young physicists were thumbing through a mathematics book. The theory is so elegant and powerful, we were never “destined” to see it in the 20th century. The problem is that 21st century mathematics has not yet been invented yet. But since physicists are genetically predisposed to be opti- mists, I am confident that we will solve the theory someday soon. Perhaps a young person reading this article will be so inspired by this story that he or she will finish the theory. I can’t wait!

What to Do If You Have a Proposal for the Unified Field Theory?

…and what not to do

Due to volume of e-mail I have received (several thousand at last count) I cannot answer all requests, especially those from individuals who have a new proposal for completing Einstein’s dream of a unified field theory, or a new theory of space and time.

However, I would like to give some guidelines for people who have thoughtfully pondered the question of the meaning of space-time.

1) Try to summarize the main idea or theme in a single paragraph. As Einstein once said, unless a theory has a simple underlying picture that the layman can understand, the theory is probably worthless. I will try to answer those proposals which are short and succinct, but I simply do not have time for proposals where the main idea is spread over many pages.

2) If you have a serious proposal for a new physical theory, submit it to a physics journal, just as Physical Review D or Nuclear Physics B. There, it will get the referee and serious attention that it deserves.

3) Remember that your theory will receive more credibility if your theory builds on top of previous theories, rather than making claims like “Einstein was wrong! ” For example, our current understanding of the quantum theory and relativity, although incomplete, still gives us a framework for which we have not seen any experimental deviation.

Even Newtonian gravity works quite well within its domain (e.g. small velocities). Relativity is useful in its domain of velocities near the speed of light. However, even relativity breaks down for atomic distances, or gravitational fields found in the center of a black hole or the Big Bang. Similarly, the quantum theory works quite well at atomic distances, but has problems with gravity. A crude combination of the quantum theory and relativity works quite well from sub-atomic distances (10^-15 cm.) to cosmological distances (10^10 km), so your theory must improve on this!

4) Try not to use vague expressions that cannot be formulated precisely or mathematically, such as “time is quantized, ” “energy is space, ” or “space is twisted, ” or “energy is a new dimension,” etc. Instead, try to use mathematics to express your ideas. Otherwise, it’s hard to understand what you are saying in a precise manner. Many referees will throw out papers which are just a collection of words, equating one mysterious concept (e.g. time) with another (e.g. light). The language of nature is mathematics (e.g. tensor calculus and Lie group theory). Try to formulate your ideas in mathematical form so that the referee has an idea of where you are coming from.

5) Once formulated mathematically, it’s then relatively easy for a theoretical physicist to determine the precise nature of the theory. At the very least, your theory must contain the tensor equations of Einstein and the quantum theory of the Standard Model. If they lack these two ingredients, then your theory probably cannot describe nature as we know it. The fundamental problem facing physicists is that General Relativity and the quantum theory, when combined into a single theory, is not “renormalizable, ” i.e. the theory blows up and becomes meaningless. Your proposal, therefore, has to give us a finite theory which combines these two formalisms. So far, only superstring theory can solve this key problem. Important: this means that, at the very minimum, your equations must contain the tensor equations of General Relativity and the Standard Model. If they do not include them, then your theory cannot qualify as a “theory of everything.”

6) Most important, try to formulate an experiment that can test your idea. All science is based on reproducible results. No matter how outlandish your idea is, it must be accepted if it holds up experimentally. So try to think up an experiment which will distinguish your result from others. But remember, your theory has to explain the experiments that have already been done, which vindicate General Relativity and the quantum theory.

Good luck!

KAKU ON BIG THINK 2021

Click to visit Big ThinkA Theory of Everything, also called The God Equation, would unify all the basic concepts of physics into a single elegant equation. So far science has yet to solve that mystery.

According to Dr. Michio Kaku, co-founder of String Field Theory and one of the most widely recognized scientists in the world today, the most “mathematically consistent” candidate so far is String Theory. In this Big Think Interview, Dr. Kaku explains why. WATCH NOW!

Want Ads

Help Wanted

Wanted: Ph.D. Physicist

  • Must do research in high energy physics and string theory.
  • Must translate Japanese and English.
  • Must work in New York City.
  • Must write popular science articles.

    For more information, contact M.Kaku, physicistjob@gmail.com.

  • Thank you very much for your interest.

    Blackholes, Wormholes and the Tenth Dimension

    Will these concepts be proven by a theory of everything?

    Last June, astronomers were toasting each other with champagne glasses in laboratories around the world, savoring their latest discovery. The repaired $2 billion Hubble Space Telescope, once the laughing stock of the scientific community, had snared its most elusive prize: a black hole. But the discovery of the Holy Grail of astrophysics may also rekindle a long simmering debate within the physics community. What lies on the other side of a black hole? If someone foolishly fell into a black hole, will they be crushed by its immense gravity, as most physicists believe, or will they be propelled into a parallel universe or emerge in another time era? To solve this complex question, physicists are opening up one of the most bizarre and tantalizing chapters in modern physics. They have to navigate a minefield of potentially explosive theories, such as the possibility of “wormholes,” “white holes,” time machines, and even the 10th dimension! This controversy may well validate J.B.S. Haldane’s wry observation that the universe is “not only queerer than we sup- pose, it is queerer than we can suppose.” This delicious controversy, which delights theoretical physicists but boggles the mind of mere mortals, is the subject of my recent book, Hyperspace.

    Black Holes: Collapsed Stars

    A black hole, simply put, is a massive, dead star whose gravity is so intense than even light cannot escape, hence its name. By definition, it can’t be seen, so NASA scientists focused instead on the tiny core of the galaxy M87, a super massive “cosmic engine” 50 million light years from earth. Astronomers then showed that the core of M87 consisted of a ferocious, swirling maelstrom of superhot hydrogen gas spinning at l.2 million miles per hour. To keep this spinning disk of gas from violently flying apart in all directions, there had to be a colossal mass concentrated at its center, weighing as much as 2 to 3 billion suns! An object with that staggering mass would be massive enough to prevent light from escaping. Ergo, a black hole.

    The Einstein-Rosen Bridge

    But this also revives an ongoing controversy surrounding black holes. The best description of a spinning black hole was given in 1963 by the New Zealand mathematician Roy Kerr, using Einstein’s equations of gravity. But there is a quirky feature to his solution. It predicts that if one fell into a black hole, one might be sucked down a tunnel (called the “Einstein-Rosen bridge”) and shot out a “white hole” in a parallel universe! Kerr showed that a spinning black hole would collapse not into a point, but to a “ring of fire.” Because the ring was spinning rapidly, centrifugal forces would keep it from collapsing. Remarkably, a space probe fired directly through the ring would not be crushed into oblivion, but might actually emerge unscratched on the other side of the Einstein-Rosen bridge, in a parallel universe. This “wormhole” may connect two parallel universes, or even distant parts of the same universe.

    Through the Looking Glass

    The simplest way to visualize a Kerr wormhole is to think of Alice’s Looking Glass. Anyone walking through the Looking Glass would be transported instantly into Wonderland, a world where animals talked in riddles and common sense wasn’t so common.

    The rim of the Looking Glass corresponds to the Kerr ring. Anyone walking through the Kerr ring might be transported to the other side of the universe or even the past. Like two Siamese twins joined at the hip, we now have two universes joined via the Looking Glass. Some physicists have wondered whether black holes or worm- holes might someday be used as shortcuts to another sector of our universe, or even as a time machine to the distant past (making possible the swashbuckling exploits in Star Wars). However, we caution that there are skeptics. The critics concede that hundreds of wormhole solutions have now been found to Einstein’s equations, and hence they cannot be lightly dismissed as the ravings of crack pots. But they point out that wormholes might be unstable, or that intense radiation and sub-atomic forces surrounding the entrance to the wormhole would kill anyone who dared to enter. Spirited debates have erupted between physicists concerning these wormholes. Unfortunately, this controversy cannot be re- solved, because Einstein’s equations break down at the center of black holes or wormholes, where radiation and sub-atomic forces might be ferocious enough to collapse the entrance. The problem is Einstein’s theory only works for gravity, not the quantum forces which govern radiation and sub-atomic particles. What is needed is a theory which embraces both the quantum theory of radiation and gravity simultaneously. In a word, to solve the problem of quantum black holes, we need a “theory of everything!”

    A Theory of Everything?

    One of the crowning achievements of 20th century science is that all the laws of physics, at a fundamental level, can be summarized by just two formalisms: (1) Einstein’s theory of gravity, which gives us a cosmic description of the very large, i.e. galaxies, black holes and the Big Bang, and (2) the quantum theory, which gives us a microscopic description of the very small, i.e. the microcosm of sub-atomic particles and radiation. But the supreme irony, and surely one of Nature’s cosmic jokes, is that they look bewilderingly different; even the world’s greatest physicists, including Einstein and Heisenberg, have failed to unify these into one. The two theories use different mathematics and different physical principles to describe the universe in their respective domains, the cosmic and the microscopic. Fortunately, we now have a candidate for this theory. (In fact, it is the only candidate. Scores of rival proposals have all been shown to be inconsistent.) It’s called “superstring theory,” and almost effortlessly unites gravity with a theory of radiation, which is required to solve the problem of quantum wormholes. The superstring theory can explain the mysterious quantum laws of sub-atomic physics by postulating that sub-atomic particles are really just resonances or vibrations of a tiny string. The vibrations of a violin string correspond to musical notes; likewise the vibrations of a superstring correspond to the particles found in nature. The universe is then a symphony of vibrating strings. An added bonus is that, as a string moves in time, it warps the fabric of space around it, producing black holes, wormholes, and other exotic solutions of Einstein’s equations. Thus, in one stroke, the superstring theory unites both the theory of Einstein and quantum physics into one coherent, compelling picture.

    A 10 Dimensional Universe

    The curious feature of superstrings, however, is that they can only vibrate in 10 dimensions. This is, in fact, one of the reasons why it can unify the known forces of the universe: in 10 dimensions there is “more room” to accommodate both Einstein’s theory of gravity as well as sub-atomic physics. In some sense, previous attempts at unifying the forces of nature failed because a standard four dimensional theory is “too small” to jam all the forces into one mathematical framework. To visualize higher dimensions, consider a Japanese tea garden, where carp spend their entire lives swimming on the bottom of a shallow pond. The carp are only vaguely aware of a world beyond the surface. To a carp “scientist,” the universe only consists of two dimensions, length and width. There is no such thing as “height.” In fact, they are incapable of imagining a third dimension beyond the pond. The word “up” has no meaning for them. (Imagine their distress if we were to suddenly lift them out of their two dimensional universe into “hyperspace,” i.e. our world!) However, if it rains, then the surface of their pond becomes rippled. Although the third dimension is beyond their comprehension, they can clearly see the waves traveling on the pond’s surface. Likewise, although we earthlings cannot “see” these higher dimensions, we can see their ripples when they vibrate. According to this theory, “light” is nothing but vibrations rippling along the 5th dimension. By adding higher dimensions, we can easily accommodate more and more forces, including the nuclear forces. In a nutshell: the more dimensions we have, the more forces we can accommodate. One persistent criticism of this theory, however, is that we do not see these higher dimensions in the laboratory. At present, every event in the universe, from the tiniest sub-atomic decay to exploding galaxies, can be described by 4 numbers (length, width, depth, and time), not 10 numbers. To answer this criticism, many physicists believe (but cannot yet prove) that the universe at the instant of the Big Bang was in fact fully 10 dimensional. Only after the instant of creation did 6 of the 10 dimensions “curled up” into a ball too tiny to observe. In a real sense, this theory is really a theory of creation, when the full power of 10 dimensional space-time was manifest.

    21st Century Physics

    Not surprisingly, the mathematics of the 10th dimensional superstring is breathtakingly beautiful as well as brutally complex, and has sent shock waves through the mathematics community. Entirely new areas of mathematics have been opened up by this theory. Unfortunately, at present no one is smart enough to solve the problem of a quantum black hole. As Edward Witten of the Institute for Advanced Study at Princeton has claimed, “String theory is 21st century physics that fell accidentally into the 20th century.” However, 21st century mathematics necessary to solve quantum black holes has not yet been discovered! However, since the stakes are so high, that hasn’t stopped teams of enterprising physicists from trying to solve superstring theory. Already, over 5,000 papers have been written on the subject. As Nobel laureate Steve Weinberg said, “how can anyone expect that many of the brightest young theorists would not work on it?” Progress has been slow but steady. Last year, a significant breakthrough was announced. Several groups of physicists independently announced that string theory can completely solve the problem of a quantum black hole. (However, the calculation was so fiendishly difficult it could only be performed in two, not 10, dimensions.) So that’s where we stand today. Many physicists now feel that it’s only a matter of time before some enterprising physicist completely cracks this ticklish problem. The equations, although difficult, are well-defined. So until then, it’s still a bit premature to buy tickets to the nearest wormhole to visit the next galaxy or hunt dinosaurs!

    For the complete library of books by Dr. Michio Kaku, click here.

    Hyperspace – A Scientific Odyssey

    A look at the higher dimensions

    Do higher dimensions exist? Are there unseen worlds just beyond our reach, beyond the normal laws of physics? Although higher dimensions have historically been the exclusive realm of charlatans, mystics, and science fiction writers, many serious theoretical physicists now believe that higher dimensions not only exist, but may also explain some of the deepest secrets of nature. Although we stress that there is at present no experimental evidence for higher dimensions, in principle they may solve the ultimate problem in physics: the final unification of all physical knowledge at the fundamental level.

    My own fascination with higher dimensions began early in childhood. One of my happiest childhood memories was crouching next to the pond at the famed Japanese Tea Garden in San Francisco, mesmerized by the brilliantly colored carp swimming slowly beneath the water lilies. In these quiet moments, I would ask myself a silly question that a only child might ask: how would the carp in that pond view the world around them? Spending their entire lives at the bottom of the pond, the carp would believe that their “universe” consisted of the water and the lilies; they would only be dimly aware that an alien world could exist just above the surface. My world was beyond their comprehension. I was intrigued that I could sit only a few inches from the carp, yet we were separated by an immense chasm. I concluded that if there were any “scientists” among the carp, they would scoff at any fish who proposed that a parallel world could exist just above the lilies. An unseen world beyond the pond made no scientific sense. Once I imagined what would happen if I reached down and suddenly grabbed one of the carp “scientists” out of the pond. I wondered, how would this appear to the carp? The startled carp “scientist” would tell a truly amazing story, being somehow lifted out of the universe (the pond) and hurled into a mysterious nether world, another dimension with blinding lights and strange-shaped objects that no carp had ever seen before. The strangest of all was the massive creature responsible for this outrage, who did not resemble a fish in the slightest. Shockingly, it had no fins whatsoever, but nevertheless could move without them. Obviously, the familiar laws of physics no longer applied in this nether world!

    The Theory of Everything

    Sometimes I believe that we are like the carp living contently on the bottom of that pond; we live our lives blissfully ignorant of other worlds that might co-exist with us, laughing at any suggestion of parallel universes.

    All this has changed rather dramatically in the past few years. The theory of higher dimensional space may now become the central piece in unlocking the origin of the universe. At the center of this conceptual revolution is the idea that our familiar three dimensional universe is “too small” to describe the myriad forces governing our universe. To describe our physical world, with its almost infinite variety of forms, requires entire libraries overflowing with mountains of technical journals and stacks of obscure, learned books. The ultimate goal of physics, some believe, is to have a single equation or expression from which this colossal volume of information can be derived from first principles. Today, many physicists believe that we have found the “unified field theory” which eluded Einstein for the last thirty years of his life. Although the theory of higher dimensional space has not been verified (and, we shall see, would be prohibitively expensive to prove experimentally), almost 5,000 papers, at last count, have been published in the physics literature concerning higher dimensional theories, beginning with the pioneering papers of Theodore Kaluza and Oskar Klein in the 1920’s and 30s, to the supergravity theory of the 1970s, and finally to the superstring theory of the 1980s and 90s. In fact, the superstring theory, which postulates that matter consists of tiny strings vibrating in hyperspace, predicts the precise number of dimensions of space and time: 10.

    Why Can’t we See the Fourth Dimension?

    To understand these higher dimensions, we remember that it takes three numbers to locate every object in the universe, from the tip of your nose to the ends of the world. For example, if you want to meet some friends in Manhattan, you tell them to meet you at the building at the corner of 42nd street and 5th avenue, on the 37th floor. It takes two numbers to locate your position on a map, and one number to specify the distance above the map. It thus takes three numbers to specify the location of your lunch. (If we meet our friends at noon, then it takes four numbers to specify the space and time of the meeting.)

    However, try as we may, it is impossible for our brains to visualize the fourth spatial dimension. Computers, of course, have no problem working in N dimensional space, but spatial dimensions beyond three simply cannot be conceptualized by our feeble brains. (The reason for this unfortunate accident has to do with biology, rather than physics. Human evolution put a premium on being able to visualize objects moving in three dimensions. There was a selection pressure placed on humans who could dodge lunging saber tooth tigers or hurl a spear at a charging mammoth. Since tigers do not attack us in the fourth spatial dimension, there simply was no advantage in developing a brain with the ability to visualize objects moving in four dimensions.)

    Meeting a Higher Dimensional Being

    To understand some of the mind-bending features of higher dimensions, imagine a two-dimensional world, called Flat land (after Edwin A. Abbott’s celebrated novel) that resembles a world existing on a flat table-top. If one of the Flatlanders becomes lost, we can quickly scan all of Flatland, peering directly inside houses, buildings, and even concealed places. If one of the Flatlanders becomes sick, we can reach directly into their insides and per form surgery, without ever cutting their skin. If one of the Flatlanders is incarcerated in jail (which is a circle enclosing the Flatlander) we can simply peel the person off from Flatland into the third dimension and place the Flatlander back somewhere else. If we become more ambitious and stick our fingers and arms through Flatland, the Flatlanders would only see circles of flesh that hover around them, constantly changing shape and merging into other circles. And lastly, if we fling a Flatlander into our three dimensional world, the Flatlander can only see two dimensional cross sections of our world, i.e. a phantasmagoria of circles, squares, etc. which constantly change shape and merge (see fig. 1 and 2). Now imagine that we are “three dimensional Flatlanders” being visited by a higher dimensional being. If we became lost, a higher dimensional being could scan our entire universe all at once, peering directly into the most tightly sealed hiding places. If we became sick, a higher dimensional being could reach into our insides and perform surgery without ever cutting our skin. If we were in a maximum-security, escape-proof jail, a higher dimensional being could simply “yank” us into a higher dimension and redeposit us back somewhere else. If higher dimensional beings stick their “fingers” into our universe, they would appear to us to be blobs of flesh which float above us and constantly merge and split apart. And lastly, if we are flung into hyperspace, we would see a collection of spheres, blobs, and polyhedra which suddenly appear, constantly change shape and color, and then mysteriously disappear. Higher dimensional people, therefore, would have powers similar to a god: they could walk through walls, disappear and reappear at will, reach into the strongest steel vaults, and see through buildings. They would be omniscient and omnipotent. Not surprisingly, speculation about higher dimensions has sparked enormous literary and artistic interest over the last hundred years.

    Mystics and Mathematics

    Fyodor Dostoyevsky, in The Brothers Karamazov, had his protagonist Ivan Karamazov speculate on the existence of higher dimensions and non-Euclidean geometries during a discussion on the existence of God. In H. G. Wells’ The Invisible Man, the source of invisibility was his ability to manipulate the fourth dimension. Oscar Wilde even refers to the fourth dimension in his play The Canterville Ghost as the homeworld for ghosts.

    The fourth dimension also appears in the literary works of Marcel Proust and Joseph Conrad; it inspired some of the musical works of Alexander Scriabin, Edgar Varege, and George Antheil. It fascinated such diverse personalities as the psychologist William James, literary figure Gertrude Stein, and revolutionary socialist Vladimir Lenin. Lenin even waged a polemic on the N-th dimension with philosopher Ernst Mach in his Materialism and Empirio-Criticism. Lenin praised Mach, who “has raised the very important and useful question of a space of n-dimensions as a conceivable space,” but then took him to task by insisting that the Tsar could only be overthrown in the third dimension.

    Artists have been particularly interested in the fourth dimension because of the possibilities of discovering new laws of perspective. In the Middle Ages, religious art was distinctive for its deliberate lack of perspective. Serfs, peasants, and kings were depicted as if they were flat, much the way children draw people. Since God was omnipotent and could therefore see all parts of our world equally, art had to reflect His point of view, so the world was painted two-dimensionally. Renaissance art was a revolt against this flat God- centered perspective. Sweeping landscapes and realistic, three dimensional people were painted from the point of view of a person’s eye, with the lines of perspective vanishing into the horizon. Renaissance art reflected the way the human eye viewed the world, from the singular point of view of the observer. In other words, Renaissance art discovered the third dimension. With the beginning of the machine age and capitalism, the artistic world revolted against the cold materialism that seemed to dominate industrial society. To the Cubists, positivism was a straitjacket that confined us to what could be measured in the laboratory, suppressing the fruits of our imagination. They asked: Why must art be clinically “realistic?” This Cubist “revolt against perspective” seized the fourth dimension because it touched the third dimension from all possible perspectives. Simply put, Cubist art embraced the fourth dimension. Picasso’s paintings are a splendid example, showing a clear rejection of three dimensional perspective, with women’s faces viewed simultaneously from several angles. Instead of a single point-of-view, Picasso’s paintings show multiple perspectives, as if they were painted by a being from the fourth dimension, able to see all perspectives simultaneously. As art historian Linda Henderson has written, “the fourth dimension and non-Euclidean geometry emerge as among the most important themes unifying much of modern art and theory.”

    Unifying the Four Forces

    Historically, physicists dismissed the theory of higher dimensions because they could never be measured, nor did they have any particular use. But to understand how adding higher dimensions can, in fact, simplify physical problems, consider the following example. To the ancient Egyptians, the weather was a complete mystery. What caused the seasons? Why did it get warmer as they traveled south? The weather was impossible to explain from the limited vantage point of the ancient Egyptians, to whom the earth appeared flat, like a two-dimensional plane.

    But now imagine sending the Egyptians in a rocket into outer space, where they can see the earth as simple and whole in its orbit around the sun. Suddenly, the answers to these questions become obvious. From outer space, it is clear that the earth tilts about 23 degrees on its axis in its orbit around the sun. Because of this tilt, the northern hemisphere receives much less sunlight during one part of its orbit than during another part. Hence we have winter and summer. And since the equator receives more sunlight on the average than the northern or southern polar regions, it becomes warmer as we approach the equator.

    In summary, the rather obscure laws of the weather are easy to understand once we view the earth from space. Thus, the solution to the problem is to go up into space, into the third dimension. Facts that were impossible to understand in a flat world suddenly become obvious when viewing a unified picture of a three dimensional earth.

    The Four Fundemental Forces

    Similarly, the current excitement over higher dimensions is that they may hold the key to the unification of all known forces. The culmination of 2,000 years of painstaking observation is the realization that that our universe is governed by four fundamental forces. These four forces, in turn, may be unified in higher dimensional space. Light, for example, may be viewed simply as vibrations in the fifth dimension. The other forces of nature may be viewed as vibrations in increasingly higher dimensions. At first glance, however, the four fundamental forces seem to bear no resemblance to each other. They are:

    Gravity is the force which keeps our feet anchored to the spinning earth and binds the solar system and the galaxies together. Without gravity, we would be immediately flung into outer space at l,000 miles per hour. Furthermore, without gravity holding the sun together, it would explode in a catastrophic burst of energy. Electro-magnetism is the force which lights up our cities and energizes our household appliances. The electronic revolution, which has given us the light bulb, TV, the telephone, computers, radio, radar, microwaves, light bulbs, and dishwashers, is a byproduct of the electro-magnetic force.

    The strong nuclear force is the force which powers the sun. Without the nuclear force, the stars would flicker out and the heavens would go dark. The nuclear force not only makes life on earth possible, it is also the devastating force unleashed by a hydrogen bomb, which can be compared to a piece of the sun brought down to earth. The weak force is the force responsible for radio active decay involving electrons. The weak force is harnessed in modern hospitals in the form of radioactive tracers used in nuclear medicine. The weak force also wrecked havoc at Chernobyl. Historically, whenever scientists unraveled the secrets of one of the four fundamental forces, this irrevocably altered the course of modern civilization, from the mastery of mechanics and Newtonian physics in the 1700s, to the harnessing of the electro-magnetism in the 1800s, and finally to the unlocking of the nuclear force in the 1900s. In some sense, some of the greatest breakthroughs in the history of science can be traced back to the gradual understanding of these four fundamental forces. Some have even claimed that the progress of the last 2,000 years of science can be understood as the successive mastery of these four fundamental forces. Given the importance of these four fundamental forces, the next question is: can they be united into one super force? Are they but the manifestations of a deeper reality? Given the fruitless search that has stumped the world’s Nobel Prize winners for half a century, most physicists agree that the Theory of Everything must be a radical departure from everything that has been tried before. For example, Niels Bohr, founder of the modern atomic theory, once listened to Wolf gang Pauli’s explanation of his version of the unified field theory. In frustration, Bohr finally stood up and said, “We are all agreed that your theory is absolutely crazy. But what divides us is whether your theory is crazy enough.”

    Today, however, after decades of false starts and frustrating dead ends, many of the world’s leading physicists think that they have finally found the theory “crazy enough” to be the unified field theory. There is widespread belief (although certainly not unanimous by any means) in the world’s major re search laboratories that we have at last found the Theory of Everything.

    Field Theory in Higher Dimension

    To see how higher dimensions helps to unify the laws of nature, physicists use the mathematical device called “field theory.” For example, the magnetic field of a bar magnet resembles a spider’s web which fills up all of space. To describe the magnetic field, we introduce the field, a series of numbers defined at each point in space which describes the intensity and direction of the force at that point. James Clerk Maxwell, in the last century, proved that the electro-magnetic force can be described by four numbers at each point in four dimensional space-time (labeled by A _ 1, A _ 2 , A _ 3 , A _ 4 ). These four numbers, in turn, obey a set of equations (called Maxwell’s field equations).

    For the gravitational force, Einstein showed that the field requires a total of 10 numbers at each point in four dimensions. These 10 numbers can be assembled into the array shown in fig. 3. (Since g _ 12 = g _ 21 , only 10 of the 16 numbers contained within the array are independent.) The gravitational field, in turn, obey Einstein’s field equations. The key idea of Theodore Kaluza in the 1920s was to write down a five dimensional theory of gravity. In five dimensions, the gravitational field has 15 independent numbers, which can be arranged in a five dimensional array (see fig.4). Kaluza then re-defined the 5th column and row of the gravitation al field to be the electromagnetic field of Maxwell. The truly miraculous feature of this construction is that the five dimensional theory of gravity reduces down precisely to Einstein’s original theory of gravity plus Maxwell’s theory of light. In other words, by adding the fifth dimension, we have trivially unified light with gravity. In other words, light is now viewed as vibrations in the fifth dimension. In five dimensions, there is “enough room” to unify both gravity and light.

    This trick is easily extended. For example, if we generalize the theory to N dimensions, then the N dimensional gravitational field can be split-up into the following pieces (see fig. 5). Now, out pops a generalization of the electromagnetic field, called the “Yang-Mills field,” which is known to describe the nuclear forces. The nuclear forces, therefore, may be viewed as vibrations of higher dimensional space. Simply put, by adding more dimensions, we are able to describe more forces. Similarly, by adding higher dimensions and further embellishing this approach (with something called “supersymmetry), we can explain the entire particle “zoo” that has been discovered over the past thirty years, with bizarre names like quarks, neutrinos, muons, gluons, etc. Although the mathematics required to extend the idea of Kaluza has reached truly breathtaking heights, startling even professional mathematicians, the basic idea behind unification remains surprisingly simple: the forces of nature can be viewed as vibrations in higher dimensional space.

    What Happened Before the Big Bang?

    One advantage to having a theory of all forces is that we may be able to resolve some of the thorniest, long-standing questions in physics, such as the origin of the universe, and the existence of “wormholes” and even time machines. The 10 dimensional superstring theory, for example, gives us a compelling explanation of the origin of the Big Bang, the cosmic explosion which took place 15 to 20 billion years ago, which sent the stars and galaxies hurling in all directions. In this theory, the universe originally started as a perfect 10 dimensional universe with nothing in it. In the beginning, the universe was completely empty. However, this 10 dimensional universe was not stable. The original 10 dimensional space-time finally “cracked” into two pieces, a four and a six dimensional universe. The universe made the “quantum leap” to another universe in which six of the 10 dimensions collapsed and curled up into a tiny ball, allowing the remaining four dimensional universe to explode outward at an enormous rate. The four dimensional universe (our world) expanded rapidly, creating the Big Bang, while the six dimensional universe wrapped itself into a tiny ball and shrunk down to infinitesimal size. This explains the origin of the Big Bang. The cur rent expansion of the universe, which we can measure with our instruments, is a rather minor aftershock of a more cataclysmic collapse: the breaking of a 10 dimensional universe into a four and six dimensional universe.

    In principle, this also explains why we cannot measure the six dimensional universe, because it has shrunk down to a size much smaller than an atom. Thus, no earth-bound experiment can measure the six dimensional universe because it has curled up into a ball too small to be analyzed by even our most powerful instruments. (This will be disappointing to those who would like to visit these higher dimensions in their lifetimes. These higher dimensions are much too small to enter.)

    Time Machines?

    Another longstanding puzzle concerns parallel universes and time travel. According to Einstein’s theory of gravity, space-time can be visualized as a fabric which is stretched and distorted by the presence of matter and energy. The gravitational field of a black hole, for example, can be visualized as a funnel, with a dead, collapsed star at the very center (see fig. 6). Anyone unfortunate enough to get too close to the funnel inexorably falls into it and is crushed to death. One puzzle, however, is that, according to Einstein’s equations, the funnel of a black hole necessarily connects our universe with a parallel universe. Furthermore, if the funnel connects our universe with itself, then we have a “worm hole” (see fig. 7). These anomalies did not bother Einstein because it was thought that travel through the neck of the funnel, called the “Einstein-Rosen bridge,” would be impossible (since anyone falling into the black hole would be killed).

    However, over the years physicists like Roy Kerr as well as Kip Thorne at the Calif. Institute of Technology have found new solutions of Einstein’s equations in which the gravitational field does not become infinite at the center, i.e. in principle, a rocket ship could travel through the Einstein- Rosen bridge to an alternate universe (or a distant part of our own universe) without being ripped apart by intense gravitational fields. (This wormhole is, in fact, the mathematical representation of Alice’s Looking Glass.)

    Even more intriguing, these wormholes can be viewed as time machines. Since the two ends of the wormhole can connect two time eras, Thorne and his colleagues have calculated the conditions necessary to enter the wormhole in one time era and exit the other side at another time era. (Thorne is undaunted by the fact that the energy necessary to open an Einstein-Rosen bridge exceeds that of a star, and is hence beyond the reach of present-day technology. But to Thorne, this is just a small detail for the engineers of some sufficiently advanced civilization in outer space!) Thorne even gives a crude idea of what a time machine might look like when built. (Imagine, however, the chaos that could erupt if time machines were as common as cars. History books could never be written. Thousands of meddlers would constantly be going back in time to eliminate the ancestors of their enemies, to change the outcome of World War I and II, to save John Kennedy’s and Abraham Lincoln’s life, etc. “History” as we know it would become impossible, throwing professional historians out of work. With every turn of a time machine’s dial, history would be changing like sands being blown by the wind.) Other physicists, however, like Steven Hawking, are dubious about time travel. They argue that quantum effects (such as intense radiation fields at the funnel) may close the Einstein-Rosen bridge. Hawking even advanced an experimental “proof” that time machines are not possible (i.e. if they existed, we would have been visited by tourists from the future).

    This controversy has recently generated a flurry of papers in the physics literature. The essential problem is that although Einstein’s equations for gravity allow for time travel, they also break down when approaching the black hole, and quantum effects, such as radiation, take over. But to calculate if these quantum corrections are intense enough to close the Einstein-Rosen bridge, one necessarily needs a unified field theory which includes both Einstein’s theory of gravity as well as the quantum theory of radiation. So there is hope that soon these questions may be answered once and for all by a unified field theory. Both sides of the controversy over time travel acknowledge that ultimately this question will be resolved by the Theory of Everything.

    Recreating Creation

    Although the 10 dimensional superstring theory has been called the most fascinating discovery in theoretical physics in the past decades, its critics have focused on its weakest point, that it is almost impossible to test. The energy at which the four fundamental forces merge into a single, unified force occurs at the fabulous “Planck energy,” which is a billion billion times greater than the energy found in a proton. Even if all the nations of the earth were to band together and single-mindedly build the biggest atom smasher in all history, it would still not be enough to test the theory. Because of this, some physicists have scoffed at the idea that superstring theory can even be considered a legitimate “theory.” Nobel laureate Sheldon Glashow, for example, has compared the superstring theory to the former Pres. Reagan’s Star Wars program (because it is untestable and drains the best scientific talent).The reason why the theory cannot be tested is rather simple. The Theory of Everything is necessarily a theory of Creation, that is, it must explain everything from the origin of the Big Bang down to the lilies of the field. Its full power is manifested at the instant of the Big Bang, where all its symmetries were intact. To test this theory, therefore, means recreating Creation on the earth, which is impossible with present-day technology. (This criticism applies, in fact, to any theory of Creation. The philosopher David Hume, for example, believed that a scientific theory of Creation was philosophically impossible. This was because the foundation of science depends on reproducibility, and Creation is one event which can never be reproduced in the laboratory.)

    Although this is discouraging, a piece of the puzzle may be supplied by the Superconducting Supercollider (SSC), which, if built, will be the world’s largest atom smasher. The SSC (which is likely to be cancelled by Congress) is designed to accelerate protons to a staggering energy of tens of trillions of electron volts. When these sub-atomic particles slam into each other at these fantastic energies within the SSC, temperatures which have not been seen since the instant of Creation will be generated. That is why it is sometimes called a “window on Creation.” Costing /8-10 billion, the SSC consists of a ring of powerful magnets stretched out in a tube over 50 miles long. In fact, one could easily fit the Washington Beltway, which surrounds Washington D.C., inside the SSC. If and when it is built, physicists hope that the SSC will find some exotic sub-atomic particles in order to complete our present-day understanding of the four forces. However, there is also the small chance that physicists might discover “super- symmetric” particles, which may be remnants of the original superstring theory. In other words, although the superstring theory cannot be tested directly by the SSC, one hopes to find resonances from the superstring theory among the debris created by smashing protons together at energies not found since the Big Bang.

    For the complete library of books by Dr. Michio Kaku, click here.

    The Physics of Time Travel

    Is it real, or is it fable?

    In H.G. Wells’ novel, The Time Machine, our protagonist jumped into a special chair with blinking lights, spun a few dials, and found himself catapulted several hundred thousand years into the future, where England has long disappeared and is now inhabited by strange creatures called the Morlocks and Eloi. That may have made great fiction, but physicists have always scoffed at the idea of time travel, considering it to be the realm of cranks, mystics, and charlatans, and with good reason.

    However, rather remarkable advances in quantum gravity are reviving the theory; it has now become fair game for theoretical physicists writing in the pages of Physical Review magazine. One stubborn problem with time travel is that it is riddled with several types of paradoxes. For example, there is the paradox of the man with no parents, i.e. what happens when you go back in time and kill your parents before you are born? Question: if your parents died before you were born, then how could you have been born to kill them in the first place?

    There is also the paradox of the man with no past. For example, let’s say that a young inventor is trying futilely to build a time machine in his garage. Suddenly, an elderly man appears from nowhere and gives the youth the secret of building a time machine. The young man then becomes enormously rich playing the stock market, race tracks, and sporting events because he knows the future. Then, as an old man, he decides to make his final trip back to the past and give the secret of time travel to his youthful self. Question: where did the idea of the time machine come from?

    There is also the paradox of the man who is own mother (my apologies to Heinlein.) “Jane” is left at an orphanage as a foundling. When “Jane” is a teenager, she falls in love with a drifter, who abandons her but leaves her pregnant. Then disaster strikes. She almost dies giving birth to a baby girl, who is then mysteriously kidnapped. The doctors find that Jane is bleeding badly, but, oddly enough, has both sex organs. So, to save her life, the doctors convert “Jane” to “Jim.”

    “Jim” subsequently becomes a roaring drunk, until he meets a friendly bartender (actually a time traveler in disguise) who wisks “Jim” back way into the past. “Jim” meets a beautiful teenage girl, accidentally gets her pregnant with a baby girl. Out of guilt, he kidnaps the baby girl and drops her off at the orphanage. Later, “Jim” joins the time travelers corps, leads a distinguished life, and has one last dream: to disguise himself as a bartender to meet a certain drunk named “Jim” in the past. Question: who is “Jane’s” mother, father, brother, sister, grand- father, grandmother, and grandchild?

    Not surprisingly, time travel has always been considered impossible. After all, Newton believed that time was like an arrow; once fired, it soared in a straight, undeviating line. One second on the earth was one second on Mars. Clocks scattered throughout the universe beat at the same rate. Einstein gave us a much more radical picture. According to Einstein, time was more like a river, which meandered around stars and galaxies, speeding up and slowing down as it passed around massive bodies. One second on the earth was Not one second on Mars. Clocks scattered throughout the universe beat to their own distant drummer.

    However, before Einstein died, he was faced with an embarrassing problem. Einstein’s neighbor at Princeton, Kurt Goedel, perhaps the greatest mathematical logician of the past 500 years, found a new solution to Einstein’s own equations which allowed for time travel! The “river of time” now had whirlpools in which time could wrap itself into a circle. Goedel’s solution was quite ingenious: it postulated a universe filled with a rotating fluid. Anyone walking along the direction of rotation would find themselves back at the starting point, but backwards in time!

    In his memoirs, Einstein wrote that he was disturbed that his equations contained solutions that allowed for time travel. But he finally concluded: the universe does not rotate, it ex- pands (i.e. as in the Big Bang theory) and hence Goedel’s solution could be thrown out for “physical reasons.” (Apparently, if the Big Bang was rotating, then time travel would be possible throughout the universe!)

    Then in 1963, Roy Kerr, a New Zealand mathematician, found a solution of Einstein’s equations for a rotating black hole, which had bizarre properties. The black hole would not collapse to a point (as previously thought) but into a spinning ring (of neutrons). The ring would be circulating so rapidly that centrifugal force would keep the ring from collapsing under gravity. The ring, in turn, acts like the Looking Glass of Alice. Anyone walking through the ring would not die, but could pass through the ring into an alternate universe. Since then, hundreds of other “wormhole” solutions have been found to Einstein’s equations. These wormholes connect not only two regions of space (hence the name) but also two regions of time as well. In principle, they can be used as time machines.

    Recently, attempts to add the quantum theory to gravity (and hence create a “theory of everything”) have given us some insight into the paradox problem. In the quantum theory, we can have multiple states of any object. For example, an electron can exist simultaneously in different orbits (a fact which is responsible for giving us the laws of chemistry). Similarly, Schrodinger’s famous cat can exist simultaneously in two possible states: dead and alive. So by going back in time and altering the past, we merely create a parallel universe. So we are changing someone ELSE’s past by saving, say, Abraham Lincoln from being assassinated at the Ford Theater, but our Lincoln is still dead. In this way, the river of time forks into two separate rivers. But does this mean that we will be able to jump into H.G. Wells’ machine, spin a dial, and soar several hundred thousand years into England’s future? No. There are a number of difficult hurdles to overcome.

    First, the main problem is one of energy. In the same way that a car needs gasoline, a time machine needs to have fabulous amounts of energy. One either has to harness the power of a star, or to find something called “exotic” matter (which falls up, rather than down) or find a source of negative energy. (Physicists once thought that negative energy was impossible. But tiny amounts of negative energy have been experimentally verified for something called the Casimir effect, i.e. the energy created by two parallel plates). All of these are exceedingly difficult to obtain in large quantities, at least for several more centuries!

    Then there is the problem of stability. The Kerr black hole, for example, may be unstable if one falls through it. Similarly, quantum effects may build up and destroy the wormhole before you enter it. Unfortunately, our mathematics is not powerful enough to answer the question of stability because you need a “theory of everything” which combines both quantum forces and gravity. At present, superstring theory is the leading candidate for such a theory (in fact, it is the ONLY candidate; it really has no rivals at all). But superstring theory, which happens to be my specialty, is still too difficult to solve completely. The theory is well-defined, but no one on earth is smart enough to solve it.

    Interestingly enough, Stephen Hawking once opposed the idea of time travel. He even claimed he had “empirical” evidence against it. If time travel existed, he said, then we would have been visited by tourists from the future. Since we see no tourists from the future, ergo: time travel is not possible. Because of the enormous amount of work done by theoretical physicists within the last 5 years or so, Hawking has since changed his mind, and now believes that time travel is possible (although not necessarily practical). (Furthermore, perhaps we are simply not very interesting to these tourists from the future. Anyone who can harness the power of a star would consider us to be very primitive. Imagine your friends coming across an ant hill. Would they bend down to the ants and give them trinkets, books, medicine, and power? Or would some of your friends have the strange urge to step on a few of them?)

    In conclusion, don’t turn someone away who knocks at your door one day and claims to be your future great-great-great grandchild. They may be right.

    The Physics of Interstellar Travel

    To one day, reach the stars.

    When discussing the possibility of interstellar travel, there is something called “the giggle factor.” Some scientists tend to scoff at the idea of interstellar travel because of the enormous distances that separate the stars. According to Special Relativity (1905), no usable information can travel faster than light locally, and hence it would take centuries to millennia for an extra-terrestrial civilization to travel between the stars. Even the familiar stars we see at night are about 50 to 100 light years from us, and our galaxy is 100,000 light years across. The nearest galaxy is 2 million light years from us. The critics say that the universe is simply too big for interstellar travel to be practical.

    Similarly, investigations into UFO’s that may originate from another planet are sometimes the “third rail” of someone’s scientific career. There is no funding for anyone seriously looking at unidentified objects in space, and one’s reputation may suffer if one pursues an interest in these unorthodox matters. In addition, perhaps 99% of all sightings of UFO’s can be dismissed as being caused by familiar phenomena, such as the planet Venus, swamp gas (which can glow in the dark under certain conditions), meteors, satellites, weather balloons, even radar echoes that bounce off mountains. (What is disturbing, to a physicist however, is the remaining 1% of these sightings, which are multiple sightings made by multiple methods of observations. Some of the most intriguing sightings have been made by seasoned pilots and passengers aboard air line flights which have also been tracked by radar and have been videotaped. Sightings like this are harder to dismiss.)

    But to an astronomer, the existence of intelligent life in the universe is a compelling idea by itself, in which extra-terrestrial beings may exist on other stars who are centuries to millennia more advanced than ours. Within the Milky Way galaxy alone, there are over 100 billion stars, and there are an uncountable number of galaxies in the universe. About half of the stars we see in the heavens are double stars, probably making them unsuitable for intelligent life, but the remaining half probably have solar systems somewhat similar to ours. Although none of the over 100 extra-solar planets so far discovered in deep space resemble ours, it is inevitable, many scientists believe, that one day we will discover small, earth-like planets which have liquid water (the “universal solvent” which made possible the first DNA perhaps 3.5 billion years ago in the oceans). The discovery of earth-like planets may take place within 20 years, when NASA intends to launch the space interferometry satellite into orbit which may be sensitive enough to detect small planets orbiting other stars.

    So far, we see no hard evidence of signals from extra-terrestrial civilizations from any earth-like planet. The SETI project (the search for extra-terrestrial intelligence) has yet to produce any reproducible evidence of intelligent life in the universe from such earth-like planets, but the matter still deserves serious scientific analysis. The key is to reanalyze the objection to faster-than-light travel.

    A critical look at this issue must necessary embrace two new observations. First, Special Relativity itself was superceded by Einstein’s own more powerful General Relativity (1915), in which faster than light travel is possible under certain rare conditions. The principal difficulty is amassing enough energy of a certain type to break the light barrier. Second, one must therefore analyze extra-terrestrial civilizations on the basis of their total energy output and the laws of thermodynamics. In this respect, one must analyze civilizations which are perhaps thousands to millions of years ahead of ours.

    The first realistic attempt to analyze extra-terrestrial civilizations from the point of view of the laws of physics and the laws of thermodynamics was by Russian astrophysicist Nicolai Kardashev. He based his ranking of possible civilizations on the basis of total energy output which could be quantified and used as a guide to explore the dynamics of advanced civilizations:

    Type I: this civilization harnesses the energy output of an entire planet.

    Type II: this civilization harnesses the energy output of a star, and generates about 10 billion times the energy output of a Type I civilization.

    Type III: this civilization harnesses the energy output of a galaxy, or about 10 billion time the energy output of a Type II civilization.

    A Type I civilization would be able to manipulate truly planetary energies. They might, for example, control or modify their weather. They would have the power to manipulate planetary phenomena, such as hurricanes, which can release the energy of hundreds of hydrogen bombs. Perhaps volcanoes or even earthquakes may be altered by such a civilization.

    A Type II civilization may resemble the Federation of Planets seen on the TV program Star Trek (which is capable of igniting stars and has colonized a tiny fraction of the near-by stars in the galaxy). A Type II civilization might be able to manipulate the power of solar flares.

    A Type III civilization may resemble the Borg, or perhaps the Empire found in the Star Wars saga. They have colonized the galaxy itself, extracting energy from hundreds of billions of stars.

    By contrast, we are a Type 0 civilization, which extracts its energy from dead plants (oil and coal). Growing at the average rate of about 3% per year, however, one may calculate that our own civilization may attain Type I status in about 100-200 years, Type II status in a few thousand years, and Type III status in about 100,000 to a million years. These time scales are insignificant when compared with the universe itself.

    On this scale, one may now rank the different propulsion systems available to different types of civilizations:

    Type 0

    • Chemical rockets
    • Ionic engines
    • Fission power
    • EM propulsion (rail guns)

     

    Type I

    • Ram-jet fusion engines
    • Photonic drive

     

    Type II

    • Antimatter drive
    • Von Neumann nano probes

     

    Type III

    • Planck energy propulsion

     

    Propulsion systems may be ranked by two quantities: their specific impulse, and final velocity of travel. Specific impulse equals thrust multiplied by the time over which the thrust acts. At present, almost all our rockets are based on chemical reactions. We see that chemical rockets have the smallest specific impulse, since they only operate for a few minutes. Their thrust may be measured in millions of pounds, but they operate for such a small duration that their specific impulse is quite small.

    NASA is experimenting today with ion engines, which have a much larger specific impulse, since they can operate for months, but have an extremely low thrust. For example, an ion engine which ejects cesium ions may have the thrust of a few ounces, but in deep space they may reach great velocities over a period of time since they can operate continuously. They make up in time what they lose in thrust. Eventually, long-haul missions between planets may be conducted by ion engines.

    For a Type I civilization, one can envision newer types of technologies emerging. Ram-jet fusion engines have an even larger specific impulse, operating for years by consuming the free hydrogen found in deep space. However, it may take decades before fusion power is harnessed commercially on earth, and the proton-proton fusion process of a ram-jet fusion engine may take even more time to develop, perhaps a century or more. Laser or photonic engines, because they might be propelled by laser beams inflating a gigantic sail, may have even larger specific impulses. One can envision huge laser batteries placed on the moon which generate large laser beams which then push a laser sail in outer space. This technology, which depends on operating large bases on the moon, is probably many centuries away.

    For a Type II civilization, a new form of propulsion is possible: anti-matter drive. Matter-anti-matter collisions provide a 100% efficient way in which to extract energy from mater. However, anti-matter is an exotic form of matter which is extremely expensive to produce. The atom smasher at CERN, outside Geneva, is barely able to make tiny samples of anti-hydrogen gas (anti-electrons circling around anti-protons). It may take many centuries to millennia to bring down the cost so that it can be used for space flight.

    Given the astronomical number of possible planets in the galaxy, a Type II civilization may try a more realistic approach than conventional rockets and use nano technology to build tiny, self-replicating robot probes which can proliferate through the galaxy in much the same way that a microscopic virus can self-replicate and colonize a human body within a week. Such a civilization might send tiny robot von Neumann probes to distant moons, where they will create large factories to reproduce millions of copies of themselves. Such a von Neumann probe need only be the size of bread-box, using sophisticated nano technology to make atomic-sized circuitry and computers. Then these copies take off to land on other distant moons and start the process all over again. Such probes may then wait on distant moons, waiting for a primitive Type 0 civilization to mature into a Type I civilization, which would then be interesting to them. (There is the small but distinct possibility that one such probe landed on our own moon billions of years ago by a passing space-faring civilization. This, in fact, is the basis of the movie 2001, perhaps the most realistic portrayal of contact with extra-terrrestrial intelligence.)

    The problem, as one can see, is that none of these engines can exceed the speed of light. Hence, Type 0,I, and II civilizations probably can send probes or colonies only to within a few hundred light years of their home planet. Even with von Neumann probes, the best that a Type II civilization can achieve is to create a large sphere of billions of self-replicating probes expanding just below the speed of light. To break the light barrier, one must utilize General Relativity and the quantum theory. This requires energies which are available for very advanced Type II civilization or, more likely, a Type III civilization.

    Special Relativity states that no usable information can travel locally faster than light. One may go faster than light, therefore, if one uses the possibility of globally warping space and time, i.e. General Relativity. In other words, in such a rocket, a passenger who is watching the motion of passing stars would say he is going slower than light. But once the rocket arrives at its destination and clocks are compared, it appears as if the rocket went faster than light because it warped space and time globally, either by taking a shortcut, or by stretching and contracting space.

    There are at least two ways in which General Relativity may yield faster than light travel. The first is via wormholes, or multiply connected Riemann surfaces, which may give us a shortcut across space and time. One possible geometry for such a wormhole is to assemble stellar amounts of energy in a spinning ring (creating a Kerr black hole). Centrifugal force prevents the spinning ring from collapsing. Anyone passing through the ring would not be ripped apart, but would wind up on an entirely different part of the universe. This resembles the Looking Glass of Alice, with the rim of the Looking Glass being the black hole, and the mirror being the wormhole. Another method might be to tease apart a wormhole from the “quantum foam” which physicists believe makes up the fabric of space and time at the Planck length (10 to the minus 33 centimeters).

    The problems with wormholes are many:

    a) one version requires enormous amounts of positive energy, e.g. a black hole. Positive energy wormholes have an event horizon(s) and hence only give us a one way trip. One would need two black holes (one for the original trip, and one for the return trip) to make interstellar travel practical. Most likely only a Type III civilization would be able harness this power.

    b) wormholes may be unstable, both classically or quantum mechanically. They may close up as soon as you try to enter them. Or radiation effects may soar as you entered them, killing you.

    c) one version requires vast amounts of negative energy. Negative energy does exist (in the form of the Casimir effect) but huge quantities of negative energy will be beyond our technology, perhaps for millennia. The advantage of negative energy wormholes is that they do not have event horizons and hence are more easily transversable.

    d) another version requires large amounts of negative matter. Unfortunately, negative matter has never been seen in nature (it would fall up, rather than down). Any negative matter on the earth would have fallen up billions of years ago, making the earth devoid of any negative matter.

    The second possibility is to use large amounts of energy to continuously stretch space and time (i.e. contracting the space in front of you, and expanding the space behind you). Since only empty space is contracting or expanding, one may exceed the speed of light in this fashion. (Empty space can warp space faster than light. For example, the Big Bang expanded much faster than the speed of light.) The problem with this approach, again, is that vast amounts of energy are required, making it feasible for only a Type III civilization. Energy scales for all these proposals are on the order of the Planck energy (10 to the 19 billion electron volts, which is a quadrillion times larger than our most powerful atom smasher).

    Lastly, there is the fundamental physics problem of whether “topology change” is possible within General Relativity (which would also make possible time machines, or closed time-like curves). General Relativity allows for closed time-like curves and wormholes (often called Einstein-Rosen bridges), but it unfortunately breaks down at the large energies found at the center of black holes or the instant of Creation. For these extreme energy domains, quantum effects will dominate over classical gravitational effects, and one must go to a “unified field theory” of quantum gravity.

    At present, the most promising (and only) candidate for a “theory of everything”, including quantum gravity, is superstring theory or M-theory. It is the only theory in which quantum forces may be combined with gravity to yield finite results. No other theory can make this claim. With only mild assumptions, one may show that the theory allows for quarks arranged in much like the configuration found in the current Standard Model of sub-atomic physics. Because the theory is defined in 10 or 11 dimensional hyperspace, it introduces a new cosmological picture: that our universe is a bubble or membrane floating in a much larger multiverse or megaverse of bubble-universes.

    Unfortunately, although black hole solutions have been found in string theory, the theory is not yet developed to answer basic questions about wormholes and their stability. Within the next few years or perhaps within a decade, many physicists believe that string theory will mature to the point where it can answer these fundamental questions about space and time. The problem is well-defined. Unfortunately, even though the leading scientists on the planet are working on the theory, no one on earth is smart enough to solve the superstring equations.

    Conclusion

    Most scientists doubt interstellar travel because the light barrier is so difficult to break. However, to go faster than light, one must go beyond Special Relativity to General Relativity and the quantum theory. Therefore, one cannot rule out interstellar travel if an advanced civilization can attain enough energy to destabilize space and time. Perhaps only a Type III civilization can harness the Planck energy, the energy at which space and time become unstable. Various proposals have been given to exceed the light barrier (including wormholes and stretched or warped space) but all of them require energies found only in Type III galactic civilizations. On a mathematical level, ultimately, we must wait for a fully quantum mechanical theory of gravity (such as superstring theory) to answer these fundamental questions, such as whether wormholes can be created and whether they are stable enough to allow for interstellar travel.

    The Physics of Extraterrestrial Civilizations

    How advanced could they possibly be?

    The late Carl Sagan once asked this question, “What does it mean for a civilization to be a million years old? We have had radio telescopes and spaceships for a few decades; our technical civilization is a few hundred years old… an advanced civilization millions of years old is as much beyond us as we are beyond a bush baby or a macaque.”

    Although any conjecture about such advanced civilizations is a matter of sheer speculation, one can still use the laws of physics to place upper and lower limits on these civilizations. In particular, now that the laws of quantum field theory, general relativity, thermodynamics, etc. are fairly well-established, physics can impose broad physical bounds which constrain the parameters of these civilizations.

    This question is no longer a matter of idle speculation. Soon, humanity may face an existential shock as the current list of a dozen Jupiter-sized extra-solar planets swells to hundreds of earth-sized planets, almost identical twins of our celestial homeland. This may usher in a new era in our relationship with the universe: we will never see the night sky in the same way ever again, realizing that scientists may eventually compile an encyclopedia identifying the precise co-ordinates of perhaps hundreds of earth-like planets.

    Today, every few weeks brings news of a new Jupiter-sized extra-solar planet being discovered, the latest being about 15 light years away orbiting around the star Gliese 876. The most spectacular of these findings was photographed by the Hubble Space Telescope, which captured breathtaking photos of a planet 450 light years away being sling-shot into space by a double-star system.

    But the best is yet to come. Early in the next decade, scientists will launch a new kind of telescope, the interferome try space telescope, which uses the interference of light beams to enhance the resolving power of telescopes.

    For example, the Space Interferometry Mission (SIM), to be launched early in the next decade, consists of multiple telescopes placed along a 30 foot structure. With an unprecedented resolution approaching the physical limits of optics, the SIM is so sensitive that it almost defies belief: orbiting the earth, it can detect the motion of a lantern being waved by an astronaut on Mars!

    The SIM, in turn, will pave the way for the Terrestrial Planet Finder, to be launched late in the next decade, which should identify even more earth-like planets. It will scan the brightest 1,000 stars within 50 light years of the earth and will focus on the 50 to 100 brightest planetary systems.

    All this, in turn, will stimulate an active effort to determine if any of them harbor life, perhaps some with civilizations more advanced than ours.

    Although it is impossible to predict the precise features of such advanced civilizations, their broad outlines can be analyzed using the laws of physics. No matter how many millions of years separate us from them, they still must obey the iron laws of physics, which are now advanced enough to explain everything from sub-atomic particles to the large-scale structure of the universe, through a staggering 43 orders of magnitude.

    Physics of Type I, II, and III Civilizations

    Specifically, we can rank civilizations by their energy consumption, using the following principles:

    1) The laws of thermodynamics. Even an advanced civilization is bound by the laws of thermodynamics, especially the Second Law, and can hence be ranked by the energy at their disposal.

    2) The laws of stable matter. Baryonic matter (e.g. based on protons and neutrons) tends to clump into three large groupings: planets, stars and galaxies. (This is a well-defined by product of stellar and galactic evolution, thermonuclear fusion, etc.) Thus, their energy will also be based on three distinct types, and this places upper limits on their rate of energy consumption.

    3) The laws of planetary evolution. Any advanced civilization must grow in energy consumption faster than the frequency of life-threatening catastrophes (e.g. meteor impacts, ice ages, supernovas, etc.). If they grow any slower, they are doomed to extinction. This places mathematical lower limits on the rate of growth of these civilizations.

    In a seminal paper published in 1964 in the Journal of Soviet Astronomy, Russian astrophysicist Nicolai Kardashev theorized that advanced civilizations must therefore be grouped according to three types: Type I, II, and III, which have mastered planetary, stellar and galactic forms of energy, respectively. He calculated that the energy consumption of these three types of civilization would be separated by a factor of many billions. But how long will it take to reach Type II and III status?

    Shorter than most realize.

    Berkeley astronomer Don Goldsmith reminds us that the earth receives about one billionth of the suns energy, and that humans utilize about one millionth of that. So we consume about one million billionth of the suns total energy. At present, our entire planetary energy production is about 10 billion billion ergs per second. But our energy growth is rising exponentially, and hence we can calculate how long it will take to rise to Type II or III status.

    Goldsmith says, “Look how far we have come in energy uses once we figured out how to manipulate energy, how to get fossil fuels really going, and how to create electrical power from hydropower, and so forth; we’ve come up in energy uses in a remarkable amount in just a couple of centuries compared to billions of years our planet has been here … and this same sort of thing may apply to other civilizations.”

    Physicist Freeman Dyson of the Institute for Advanced Study estimates that, within 200 years or so, we should attain Type I status. In fact, growing at a modest rate of 1% per year, Kardashev estimated that it would take only 3,200 years to reach Type II status, and 5,800 years to reach Type III status. Living in a Type I,II, or III civilization

    For example, a Type I civilization is a truly planetary one, which has mastered most forms of planetary energy. Their energy output may be on the order of thousands to millions of times our current planetary output. Mark Twain once said, ”Everyone complains about the weather, but no one does anything about it.“ This may change with a Type I civilization, which has enough energy to modify the weather. They also have enough energy to alter the course of earthquakes, volcanoes, and build cities on their oceans.

    Currently, our energy output qualifies us for Type 0 status. We derive our energy not from harnessing global forces, but by burning dead plants (e.g. oil and coal). But already, we can see the seeds of a Type I civilization. We see the beginning of a planetary language (English), a planetary communication system (the Internet), a planetary economy (the forging of the European Union), and even the beginnings of a planetary culture (via mass media, TV, rock music, and Hollywood films).

    By definition, an advanced civilization must grow faster than the frequency of life-threatening catastrophes. Since large meteor and comet impacts take place once every few thousand years, a Type I civilization must master space travel to deflect space debris within that time frame, which should not be much of a problem. Ice ages may take place on a time scale of tens of thousands of years, so a Type I civilization must learn to modify the weather within that time frame.

    Artificial and internal catastrophes must also be negotiated. But the problem of global pollution is only a mortal threat for a Type 0 civilization; a Type I civilization has lived for several millennia as a planetary civilization, necessarily achieving ecological planetary balance. Internal problems like wars do pose a serious recurring threat, but they have thousands of years in which to solve racial, national, and sectarian conflicts.

    Eventually, after several thousand years, a Type I civilization will exhaust the power of a planet, and will derive their energy by consuming the entire output of their suns energy, or roughly a billion trillion trillion ergs per second.

    With their energy output comparable to that of a small star, they should be visible from space. Dyson has proposed that a Type II civilization may even build a gigantic sphere around their star to more efficiently utilize its total energy output. Even if they try to conceal their existence, they must, by the Second Law of Thermodynamics, emit waste heat. From outer space, their planet may glow like a Christmas tree ornament. Dyson has even proposed looking specifically for infrared emissions (rather than radio and TV) to identify these Type II civilizations.

    Perhaps the only serious threat to a Type II civilization would be a nearby supernova explosion, whose sudden eruption could scorch their planet in a withering blast of X-rays, killing all life forms. Thus, perhaps the most interesting civilization is a Type III civilization, for it is truly immortal. They have exhausted the power of a single star, and have reached for other star systems. No natural catastrophe known to science is capable of destroying a Type III civilization.

    Faced with a neighboring supernova, it would have several alternatives, such as altering the evolution of dying red giant star which is about to explode, or leaving this particular star system and terraforming a nearby planetary system.

    However, there are roadblocks to an emerging Type III civilization. Eventually, it bumps up against another iron law of physics, the theory of relativity. Dyson estimates that this may delay the transition to a Type III civilization by perhaps millions of years.

    But even with the light barrier, there are a number of ways of expanding at near-light velocities. For example, the ultimate measure of a rockets capability is measured by something called “specific impulse” (defined as the product of the thrust and the duration, measured in units of seconds). Chemical rockets can attain specific impulses of several hundred to several thousand seconds. Ion engines can attain specific impulses of tens of thousands of seconds. But to attain near-light speed velocity, one has to achieve specific impulse of about 30 million seconds, which is far beyond our current capability, but not that of a Type III civilization. A variety of propulsion systems would be available for sub-light speed probes (such as ram-jet fusion engines, photonic engines, etc.)

    How to Explore the Galaxy

    Because distances between stars are so vast, and the number of unsuitable, lifeless solar systems so large, a Type III civilization would be faced with the next question: what is the mathematically most efficient way of exploring the hundreds of billions of stars in the galaxy?

    In science fiction, the search for inhabitable worlds has been immortalized on TV by heroic captains boldly commanding a lone star ship, or as the murderous Borg, a Type III civilization which absorbs lower Type II civilization (such as the Federation). However, the most mathematically efficient method to explore space is far less glamorous: to send fleets of “Von Neumann probes” throughout the galaxy (named after John Von Neumann, who established the mathematical laws of self-replicating systems).

    A Von Neumann probe is a robot designed to reach distant star systems and create factories which will reproduce copies themselves by the thousands. A dead moon rather than a planet makes the ideal destination for Von Neumann probes, since they can easily land and take off from these moons, and also because these moons have no erosion. These probes would live off the land, using naturally occurring deposits of iron, nickel, etc. to create the raw ingredients to build a robot factory. They would create thousands of copies of themselves, which would then scatter and search for other star systems.

    Similar to a virus colonizing a body many times its size, eventually there would be a sphere of trillions of Von Neumann probes expanding in all directions, increasing at a fraction of the speed of light. In this fashion, even a galaxy 100,000 light years across may be completely analyzed within, say, a half million years.

    If a Von Neumann probe only finds evidence of primitive life (such as an unstable, savage Type 0 civilization) they might simply lie dormant on the moon, silently waiting for the Type 0 civilization to evolve into a stable Type I civilization. After waiting quietly for several millennia, they may be activated when the emerging Type I civilization is advanced enough to set up a lunar colony. Physicist Paul Davies of the University of Adelaide has even raised the possibility of a Von Neumann probe resting on our own moon, left over from a previous visitation in our system aeons ago.

    (If this sounds a bit familiar, that’s because it was the basis of the film, 2001. Originally, Stanley Kubrick began the film with a series of scientists explaining how probes like these would be the most efficient method of exploring outer space. Unfortunately, at the last minute, Kubrick cut the opening segment from his film, and these monoliths became almost mystical entities)

    New Developments

    Since Kardashev gave the original ranking of civilizations, there have been many scientific developments which refine and extend his original analysis, such as recent developments in nanotechnology, biotechnology, quantum physics, etc.

    For example, nanotechnology may facilitate the development of Von Neumann probes. As physicist Richard Feynman observed in his seminal essay, “There’s Plenty of Room at the Bottom,” there is nothing in the laws of physics which prevents building armies of molecular-sized machines. At present, scientists have already built atomic-sized curiosities, such as an atomic abacus with Buckyballs and an atomic guitar with strings about 100 atoms across.

    Paul Davies speculates that a space-faring civilization could use nanotechnology to build miniature probes to explore the galaxy, perhaps no bigger than your palm. Davies says, “The tiny probes I’m talking about will be so inconspicuous that it’s no surprise that we haven’t come across one. It’s not the sort of thing that you’re going to trip over in your back yard. So if that is the way technology develops, namely, smaller, faster, cheaper and if other civilizations have gone this route, then we could be surrounded by surveillance devices.”

    Furthermore, the development of biotechnology has opened entirely new possibilities. These probes may act as life-forms, reproducing their genetic information, mutating and evolving at each stage of reproduction to enhance their capabilities, and may have artificial intelligence to accelerate their search.

    Also, information theory modifies the original Kardashev analysis. The current SETI project only scans a few frequencies of radio and TV emissions sent by a Type 0 civilization, but perhaps not an advanced civilization. Because of the enormous static found in deep space, broadcasting on a single frequency presents a serious source of error. Instead of putting all your eggs in one basket, a more efficient system is to break up the message and smear it out over all frequencies (e.g. via Fourier like transform) and then reassemble the signal only at the other end. In this way, even if certain frequencies are disrupted by static, enough of the message will survive to accurately reassemble the message via error correction routines. However, any Type 0 civilization listening in on the message on one frequency band would only hear nonsense. In other words, our galaxy could be teeming with messages from various Type II and III civilizations, but our Type 0 radio telescopes would only hear gibberish.

    Lastly, there is also the possibility that a Type II or Type III civilization might be able to reach the fabled Planck energy with their machines (10^19 billion electron volts). This is energy is a quadrillion times larger than our most powerful atom smasher. This energy, as fantastic as it may seem, is (by definition) within the range of a Type II or III civilization.

    The Planck energy only occurs at the center of black holes and the instant of the Big Bang. But with recent advances in quantum gravity and superstring theory, there is renewed interest among physicists about energies so vast that quantum effects rip apart the fabric of space and time. Although it is by no means certain that quantum physics allows for stable wormholes, this raises the remote possibility that a sufficiently advanced civilizations may be able to move via holes in space, like Alice’s Looking Glass. And if these civilizations can successfully navigate through stable wormholes, then attaining a specific impulse of a million seconds is no longer a problem. They merely take a short-cut through the galaxy. This would greatly cut down the transition between a Type II and Type III civilization.

    Second, the ability to tear holes in space and time may come in handy one day. Astronomers, analyzing light from distant supernovas, have concluded recently that the universe may be accelerating, rather than slowing down. If this is true, there may be an anti-gravity force (perhaps Einstein’s cosmological constant) which is counteracting the gravitational attraction of distant galaxies. But this also means that the universe might expand forever in a Big Chill, until temperatures approach near-absolute zero. Several papers have recently laid out what such a dismal universe may look like. It will be a pitiful sight: any civilization which survives will be desperately huddled next to the dying embers of fading neutron stars and black holes. All intelligent life must die when the universe dies.

    Contemplating the death of the sun, the philosopher Bertrand Russel once wrote perhaps the most depressing paragraph in the English language: “…All the labors of the ages, all the devotion, all the inspiration, all the noonday brightness of human genius, are destined to extinction in the vast death of the solar system, and the whole temple of Mans achievement must inevitably be buried beneath the debris of a universe in ruins…”

    Today, we realize that sufficiently powerful rockets may spare us from the death of our sun 5 billion years from now, when the oceans will boil and the mountains will melt. But how do we escape the death of the universe itself?

    Astronomer John Barrows of the University of Sussex writes, “Suppose that we extend the classification upwards. Members of these hypothetical civilizations of Type IV, V, VI, … and so on, would be able to manipulate the structures in the universe on larger and larger scales, encompassing groups of galaxies, clusters, and superclusters of galaxies.” Civilizations beyond Type III may have enough energy to escape our dying universe via holes in space.

    Lastly, physicist Alan Guth of MIT, one of the originators of the inflationary universe theory, has even computed the energy necessary to create a baby universe in the laboratory (the temperature is 1,000 trillion degrees, which is within the range of these hypothetical civilizations).

    Of course, until someone actually makes contact with an advanced civilization, all of this amounts to speculation tempered with the laws of physics, no more than a useful guide in our search for extra-terrestrial intelligence. But one day, many of us will gaze at the encyclopedia containing the coordinates of perhaps hundreds of earth-like planets in our sector of the galaxy. Then we will wonder, as Sagan did, what a civilization a millions years ahead of ours will look like…

    BBC Documentary: Parallel Universes (5 Clips)

    Parallel Universes is a 2001 documentary produced by the BBC’s Horizon series. The documentary has to do with parallel universes, string theory, M theory, supergravity, and other theoretical physics concepts. Participants include Michio Kaku, Paul Steinhardt, and other physicists.

    BBC Time Series (5 Clips) DAYTIME

    We humans seem to run to the beat of time, often without being aware of how this is the case or how our perception of it may differ from another person’s, from nature’s rhythms or from our own internal clock. In the first episode of the series, string theory pioneer Michio Kaku witnesses one of the most extraordinary feats of timing in nature on a remote Californian beach.

    Radio Programs

    Listen Now to Science Fantastic

     

     

     

    NEW! STAY TUNED…
    Visit sciencefantastic.org to sign up for 2024 show updates.

    Dr. Kaku hosts a weekly science radio program that airs on over 100 commercial radio stations nationwide and also online worldwide.

    Topics covered include black holes, time travel, higher dimensions, string theory, wormholes, search for extra-terrestrial life, dark matter and dark energy, the future of space travel, genetic engineering, the aging process, the future of medicine, the human body shop, artificial intelligence, the future of computers and robots, as well as topics from science fiction.

    SCIENCE FANTASTIC broadcasts every Saturday.

    LISTEN NOWLISTEN NOW TO SCIENCE FANTASTIC

    Presented by Genesis Communications Network.

    SCIENCE FANTASTIC Current Radio Affiliates

    CITYSTATESTATIONFREQTIME
    AnchorageAKK279BG103.7 FMSAT 9:00PM-12:00AM
    Anchorage-Kenai-Seward-FishhookAKKFQD750 AMSAT 9:00PM-12:00AM
    Fairbanks-Pleasant Valley-Eielson AFB-NenanaAKKFBX970 AMSUN 12:00PM-3:00PM
    Florence-Muscle ShoalsALWBCF1240 AMMON 12:00AM-2:00AM
    Florence-Muscle ShoalsALW246BS97.1 FMMON 12:00AM-2:00AM
    Fort PayneALW230CX93.9 FMSAT 4:00PM-7:00PM
    Fort Payne-Valley Head-Sylvania-RainsvilleALWFPA1400 AMSAT 4:00PM-7:00PM
    Banning-Moreno Valley-Hemet-YucaipaCAKMET1490 AMSAT 5:00PM-8:00PM
    Daytona BeachFLW228CT93.5 FMSAT 6:00PM-8:00PM
    Daytona Beach-Flagler Beach-New Smyrna BeachFLWNDB1150 AMSAT 6:00PM-8:00PM
    Pensacola-Ferry Pass-Molino-Gulf ShoresFLWEBY1330 AMSAT 1:00PM-3:00PM
    Pensacola-Gulf Breeze-BellviewFLW256DL99.1 FMSAT 1:00PM-3:00PM
    Cairo-Bainbridge-Camilla-ThomasvilleGAWGRA790 AMSAT 5:00PM-7:00PM
    AganaGUKUSG1350 AMSAT 10:00PM-1:00AM
    AganaGUK227CT93.3 FMSAT 10:00PM-1:00AM
    TumonGUKIJI HD3104.3 FMSAT 10:00PM-1:00AM
    Bonners FerryIDK246CU97.1 FMSAT 6:00PM-8:00PM
    Bonners Ferry-Moyie SpringsIDKBFI1450 AMSAT 6:00PM-8:00PM
    Burley-Twin Falls-RupertIDKBAR1230 AMSUN 5:00AM-7:00AM
    SandpointIDK287BT105.3 FMSAT 6:00PM-8:00PM
    Sandpoint-PonderayIDKSPT1400 AMSAT 6:00PM-8:00PM
    SlidellLAW230CR93.9 FMSAT 12:00PM-2:00PM
    Gardner-Baldwinville-Fitchburg-AtholMAWGAW1340 AMSUN 12:00AM-3:00AM
    Orange-Erving-GreenfieldMAWJDF97.3 FMSUN 12:00AM-3:00AM
    East Tawas-Skidway Lake-Au Gres-Au SabreMIWIOS1480 AMSUN 8:00PM-11:00PM
    Flint-Saginaw-Fenton-OwossoMIWFNT1470 AMSAT 4:00PM-7:00PM
    PetoskeyMIW272CR102.3 FMSAT 4:00PM-7:00PM
    Tawas CityMIW295CU106.9 FMSUN 8:00PM-11:00PM
    Traverse City-PetoskeyMIWMKT1270 AMSAT 4:00PM-7:00PM
    Saint CloudMNK277BS103.3 FMSUN 8:00PM-12:00AM
    Saint Cloud-Saint Stephen-Clearwater-FoleyMNKNSI1450 AMSUN 8:00PM-12:00AM
    Aurora-Springfield-Joplin-Bella VistaMOKSWM940 AMSUN 8:00PM-11:00PM
    Cape Girardeau-Carbondale-MarionMOKZIM960 AMSAT 6:00PM-7:00PM
    Osage BeachMOK248BP97.5 FMSAT 4:00PM-7:00PM
    Osage BeachMOK285ER104.9 FMSAT 4:00PM-7:00PM
    Osage Beach-Linn Creek-Sunrise BeachMOKRMS1150 AMSAT 4:00PM-7:00PM
    Poplar Bluff-Dexter-DoniphanMOKLID1340 AMSAT 1:00PM-2:00PM
    Sikeston-Dexter-Cape GirardeauMOKSIM1400 AMSAT 6:00PM-7:00PM
    West PlainsMOK286CK105.1 FMSAT 4:00PM-7:00PM
    West PlainsMOK286CK105.1 FMSUN 8:00PM-11:00PM
    West Plains-Mountain ViewMOKWPM1450 AMSAT 4:00PM-7:00PM
    West Plains-Mountain ViewMOKWPM1450 AMSUN 8:00PM-11:00PM
    Jackson-FloraMSWYAB103.9 FMSAT 4:00PM-7:00PM
    Jackson-FloraMSWYAB103.9 FMSUN 7:00PM-10:00PM
    Laurel-Hattiesburg-Ellisville-CollinsMSWMXI98.1 FMSUN 5:00PM-6:00PM
    Bozeman-Belgrade-ManhattanMTKMMS1450 AMSUN 10:00PM-12:00AM
    Great Falls-Fairfield-Fort BentonMTKINX102.7 FMSUN 8:00PM-10:00PM
    Livingston-Bozeman-Clyde ParkMTKPRK1340 AMSUN 10:00PM-12:00AM
    Albemarle-Concord-Locust-SalisburyNCWSPC1010 AMSUN 6:00PM-9:00PM
    Lebanon-Hanover-EnfieldNHWUVR1490 AMSAT 9:00PM-11:00PM
    Newport-Claremont-Lebanon-Franklin-Bristol-LaNHWNTK1020 AMSAT 9:00PM-11:00PM
    West LebanonNHW255CF98.9 FMSAT 9:00PM-11:00PM
    Clovis-PortalesNMKCLV1240 AMSUN 7:00PM-8:00PM
    Mesilla Park-Las Cruces-University ParkNMKMVR104.9 FMSAT 4:00PM-7:00PM
    Mesilla Park-Las Cruces-University ParkNMKMVR HD296.7 FMSAT 4:00PM-7:00PM
    Auburn-Weedsport-Seneca Falls-ClydeNYWAUB1590 AMSAT 1:00PM-3:00PM
    Geneva-Auburn-Canandaigua-NewarkNYWGVA1240 AMSAT 1:00PM-3:00PM
    Geneva-Seneca FallsNYW240DO95.9 FMSAT 1:00PM-3:00PM
    Melrose Park-AuburnNYW251AJ98.1 FMSAT 1:00PM-3:00PM
    Watertown-Fort Drum-Adams-ClaytonNYWATN1240 AMSUN 1:00PM-4:00PM
    Cleveland-Euclid-Mentor-East ClevelandOHWINT1330 AMSAT 9:00PM-10:00PM
    Mentor-Euclid-Cleveland HeightsOHW268CO101.5 FMSAT 9:00PM-10:00PM
    Oklahoma City-Edmond-Enid-StillwaterOKKZLS1640 AMSAT 12:00PM-1:00PM
    Oklahoma City-Edmond-NormanOKKNAH HD299.7 FMSAT 12:00PM-1:00PM
    Klamath Falls-Bonanza-ChiloquiORKFLS1450 AMSAT 8:00AM-11:00AM
    Klamath Falls-Bonanza-ChiloquiORKFLS1450 AMSUN 6:00PM-9:00PM
    Scranton-Wilkes-Barre-Carbondale-Black MountaPAWBZU910 AMSUN 8:00PM-9:00PM
    Warren-Youngsville-Clarendon-SheffieldPAW244CU96.7 FMSAT 12:00PM-3:00PM
    Warren-Youngsville-ScandiaPAWNAE1310 AMSAT 12:00PM-3:00PM
    West Hazleton-Wilkes-Barre-ScrantonPAWKZN1300 AMSUN 8:00PM-9:00PM
    Wilkes-Barre-Scranton-Black MountainPAWILK980 AMSUN 8:00PM-9:00PM
    Wilkes-Barre-Scranton-CarbondalePAWILK103.1 FMSUN 8:00PM-9:00PM
    Anderson-Easley-SenecaSCWAIM1230 AMSAT 8:00PM-11:00PM
    Andrews-Odessa-MidlandTXKACT1360 AMSAT 6:00AM-7:00AM
    Borger-Pampa-AmarilloTXKQTY1490 AMSUN 6:00PM-7:00PM
    College Station-Navasota-Brenham-GiddingsTXWTAW1620 AMSAT 6:00PM-9:00PM
    Corpus Christi-Kingsville-RockportTXKEYS1440 AMSAT 4:00PM-7:00PM
    Delta-Provo-Salt Lake City-Richfield, MantiUTKYAH540 AMSAT 12:00AM-3:00AM
    Burlington-Barre-Middlebury-PlattsburghVT-NYWVMT620 AMSAT 5:00PM-8:00PM
    Burlington-Barre-Middlebury-PlattsburghVT-NYW242BK96.3 FMSAT 5:00PM-8:00PM
    Aberdeen-Montesano-Aberdeen GardensWAK263BE100.5 FMSUN 9:00PM-12:00AM
    Aberdeen-Ocean ShoresWAKSWW HD4102.1 FMSUN 9:00PM-12:00AM
    Aberdeen-Ocean Shores-Westport-MontesanoWAKBKW1450 AMSUN 9:00PM-12:00AM
    Ellensburg-Thorp-Selah-Cle ElumWAKXLE1240 AMSUN 6:00PM-7:00PM
    Richland-Kennewick-PascoWAKONA610 AMSUN 10:00PM-12:00AM
    Shelton-OlympiaWAK277CZ103.3 FMSAT 2:00AM-5:00AM
    Shelton-OlympiaWAK277CZ103.3 FMSAT 7:00PM-9:00PM
    Shelton-OlympiaWAK277CZ103.3 FMSUN 8:00PM-10:00PM
    Shelton-Olympia-TacomaWAKMAS1030 AMSAT 2:00AM-5:00AM
    Shelton-Olympia-TacomaWAKMAS1030 AMSAT 7:00PM-9:00PM
    Shelton-Olympia-TacomaWAKMAS1030 AMSUN 8:00PM-10:00PM
    BeckleyWVW266AZ101.1 FMSAT 5:00PM-7:00PM
    Beckley-Charleston-PrincetonWVWWNR620 AMSAT 5:00PM-7:00PM
    CharlestonWVW243DR96.5 FMSAT 5:00PM-8:00PM
    CharlestonWVW243DR96.5 FMSUN 12:00AM-3:00AM
    Charleston-Huntington-Teays Valley-PinchWVWCHS580 AMSAT 5:00PM-8:00PM
    Charleston-Huntington-Teays Valley-PinchWVWCHS580 AMSUN 12:00AM-3:00AM
    LewisburgWVW247BZ97.3 FMSUN 7:00PM-9:00PM
    White Sulphur Spring-LewisburgWVWSLW1310 AMSUN 7:00PM-9:00PM
    SheridanWYK292DZ106.3 FMSAT 6:00AM-7:00AM
    Sheridan-Buffalo-RanchesterWYKZWY HD494.9 FMSAT 6:00AM-7:00AM
    (All airtimes are on Saturday unless otherwise noted.)

     
    Tell your local radio station that you want SCIENCE FANTASTIC.

    Mathematician, Two Physicists Share Crafoord Prize

    This year’s Crafoord Prize, a sort of alternative Nobel, has been awarded to a mathematician and two physicists whose work ranges from the mathematics of string theory to the details of how black holes suck in matter.

    About

    Michio Kaku at the Chalkboard

    Dr. Michio Kaku — theoretical physicist, bestselling author, acclaimed public speaker, renowned futurist, and popularizer of science. As co-founder of String Field Theory, Dr. Kaku carries on Einstein’s quest to unite the four fundamental forces of nature into a single grand unified theory of everything.

     

    NEW YORK TIMES BESTSELLING AUTHOR

    Kaku’s newest book, THE FUTURE OF THE MIND was released on February 25, 2014 and is now available. To see more, click here.

    Dr. Kaku is the author of numerous New York Times Bestselling Books:

    To search this website for book-related updates, click here.

     


     

    MEDIA FIGURE AND POPULARIZER OF SCIENCE

    Kaku has starred in a myriad of science programming for television including Discovery, Science Channel, BBC, ABC, and History Channel. Beyond his numerous bestselling books, he has also been a featured columnist for top popular science publications such as Popular Mechanics, Discover, COSMOS, WIRED, New Scientist, Newsweek, and many others. Dr. Kaku was also one of the subjects of the award-winning documentary, ME & ISAAC NEWTON by Michael Apted.

    He is a news contributor to CBS:This Morning and is a regular guest on news programs around the world including CBS, Fox News, CNBC, MSNBC, CNN, RT. He has also made guest appearances on all major talk shows including The Daily Show with Jon Stewart, The Colbert Report with Stephen Colbert, The Late Show with David Letterman, The Tonight Show with Jay Leno, Conan on TBS, and others.

    BBC Series: Time — Michio Kaku goes on an extraordinary exploration of the world in search of time.

    BBC Four series: Visions of the Future — 3 part series exploring the cutting edge science of today, tomorrow, and beyond.

    History Channel’s The Universe — Interviews with the world’s leading physicists and historians are woven together with animated recreations and first-person accounts to explain concepts such as the formation of galaxies, the creation of elements and the formation of Earth itself.

    COSMOS Magazine — He stretches his mind to 11 dimensions, understands what Einstein failed to grasp, and he plans for the death of our Sun, five billion years from now. Michio Kaku is a superhero of the incomprehensible.

     


     

    RADIO ON-AIR PERSONALITY

    Michio Kaku hosts two weekly radio programs heard on stations around the country and podcast around the world.

    Science Fantastic — a live science radio talk show which airs every Saturday.

    Explorations in Science — airing every first, third, and fifth Fridays of each month and podcast every Tuesday.

    For the full details of Dr. Kaku’s radio shows, visit Dr. Kaku’s Radio Page.

     


     

    ACADEMIA

    Theoretical Physicist — Dr. Michio Kaku is the co-creator of string field theory, a branch of string theory. He received a B.S. (summa cum laude) from Harvard University in 1968 where he came first in his physics class. He went on to the Berkeley Radiation Laboratory at the University of California, Berkeley and received a Ph.D. in 1972. In 1973, he held a lectureship at Princeton University.

    Michio continues Einstein’s search for a “Theory of Everything,” seeking to unify the four fundamental forces of the universe—the strong force, the weak force, gravity and electromagnetism.

    He is the author of several scholarly, Ph.D. level textbooks and has had more than 70 articles published in physics journals, covering topics such as superstring theory, supergravity, supersymmetry, and hadronic physics.

    Professor of Physics — He holds the Henry Semat Chair and Professorship in theoretical physics at the City College of New York (CUNY), where he has taught for over 25 years. He has also been a visiting professor at the Institute for Advanced Study at Princeton, as well as New York University (NYU).

     

    X